FOURIER ANALYSIS. (Fall 2016)

3. EXERCISES (Fri 7.10, 10-12 in room C322)

1. (i) Let $N \in \mathbf{N}$. Show that there exists a non-trivial function $f \in L^1[-\pi, \pi]$ such that $F_N * f(x) = 0$ for all x.

(ii) Is there a non-trivial function $f \in L^1[-\pi,\pi]$ so that $F_N * f(x) = 0$ for all x and for all $N \ge 0$?

- 2. Use the results of lectures and verify that the Fourier-series of an integrable function converges at any point of differentiability of f.
- **3.** Let a > 0 be a real number. Suppose the sequence $(x_n)_{n=1}^{\infty}$ is equidistributed (mod 1). Show that if $a \in \mathbb{Z} \setminus \{0\}$, then also the sequence $(ax_n)_{n=1}^{\infty}$ is equidistributed (mod 1). Does the same result hold also for all $\alpha \notin \mathbb{Q}$?
- **4.** Show that the sequence $(\langle a \log n \rangle)_{n=1}^{\infty}$ is *not* equidistributed (mod 1) for any $a \in \mathbf{R}$.
- 5. Prove Corollary 4.8; that is, show that if a 2π -periodic function f(x) is piecewise C^1 , then its Fourier series converges at every point, and

$$\lim_{N \to \infty} S_N f(x) = \lim_{t \to 0} \frac{f(x+t) + f(x-t)}{2}, \qquad x \in [-\pi, \pi].$$

- **6.** Let $f \in C_{\#}(-\pi, \pi)$. Assume that f has another period $\beta > 0$: $f(\beta + x) = f(x)$ for all x. Show that if f is constant if $\beta/2\pi$ is irrational.
- $\mathbf{7}^{*1}$ Is the sequence $(\sqrt[3]{n})_{n=1}^{\infty}$ equidistributed mod 1?

¹These *-exercises are extras for afficinadoes, not required to get full points from exercises

Hints for some of the exercises: **T.4(ii):** [Hint: Apply Weyl's criterium and compare the sum $\sum_{n=1}^{N} e^{2\pi i a \log n}$ with the corresponding integral.]

[Recall our result on the equidistribution of $\langle \alpha n \rangle.]$ **T.6**: