FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 2

Exercise 1. (i) Show that if there exist the limit $A:=\lim _{n \rightarrow \infty} a_{n}$, then also

$$
\lim _{N \rightarrow \infty} \frac{a_{0}+a_{1}+\ldots+a_{n-1}}{N}=A
$$

(ii) Use part (i) to verify that if the series $\sum_{n=0}^{\infty} b_{n}$ converges and has sum S, then it is also Cesaro summable, i.e. if $s_{n}:=\sum_{k=0}^{n} b_{n}$, we have

$$
S=\lim _{N \rightarrow \infty} \frac{s_{0}+s_{1}+\ldots+s_{n-1}}{N}
$$

Show by a counter example that the converse is not true.
(iii) Show that for Fourier series of given integrable function f the Fejer partial sum takes the form

$$
\sigma_{N} f(x)=\sum_{n=-(N-1)}^{N-1}\left(\frac{N-|n|}{N}\right) \widehat{f}(n) e^{i n x}
$$

Solution 1. (i) Suppose that the limit $A:=\lim _{n \rightarrow \infty} a_{n}$ exists and fix $\varepsilon>0$. Because the limit exists, we can find N_{0} such that $\left|a_{n}-A\right|<\varepsilon$ for any $n>N_{0}$. For any $N>N_{0}$ we have

$$
\begin{aligned}
\left|\frac{a_{0}+a_{1}+\ldots+a_{N-1}}{N}-A\right| \leq & \left|\frac{a_{0}+a_{1}+\ldots+a_{N_{0}}-N_{0} A}{N}\right| \\
& +\frac{\left|a_{N_{0}+1}-A\right|+\ldots+\left|a_{N-1}-A\right|}{N} \\
\leq & \frac{\left|\sum_{n=0}^{N_{0}} a_{n}\right|+|A|\left(N_{0}+1\right)}{N}+\frac{\left(N-N_{0}-1\right) \varepsilon}{N} \\
\leq & \frac{\left|\sum_{n=0}^{N_{0}} a_{n}\right|+|A|\left(N_{0}+1\right)}{N}+\varepsilon
\end{aligned}
$$

As the constant $C=\left|\sum_{n=0}^{N_{0}} a_{n}\right|+|A|\left(N_{0}+1\right)$ does not depend on N, we have that $C / N<\varepsilon$ for sufficiently large N. As ε was arbitrary, this proves that

$$
\lim _{N \rightarrow \infty} \frac{a_{0}+a_{1}+\ldots+a_{N-1}}{N}=A
$$

(ii) Suppose that the series $\sum_{n=0}^{\infty} b_{n}$ converges and has sum S. This means that if we denote $s_{N}=\sum_{n=0}^{N} b_{n}$, we have $S=\lim _{N \rightarrow \infty} s_{N}$. By applying (i), we obtain immediately

$$
S=\lim _{N \rightarrow \infty} \frac{s_{0}+s_{1}+\ldots+s_{N-1}}{N}
$$

As a counterexample, consider the sequence $b_{n}=(-1)^{n}$. The partial sums are $s_{N}=$ $\sum_{n=0}^{N} b_{n}=\left(1+(-1)^{N}\right) / 2$. As all the partial sums are alternatingly 1 or 0 , the series is not summable. However, it is Cesaro summable: for even N, we have

$$
\frac{s_{0}+\ldots+s_{N-1}}{N}=\frac{N / 2}{N}=\frac{1}{2}
$$

and for odd N

$$
\frac{s_{0}+\ldots+s_{N-1}}{N}=\frac{(N+1) / 2}{N}=\frac{1}{2}+\frac{1}{2 N} \rightarrow \frac{1}{2}
$$

(iii) We can directly compute

$$
\begin{aligned}
\sigma_{N} f(x) & =\frac{1}{N} \sum_{k=0}^{N-1} S_{k} f(x) \\
& =\frac{1}{N} \sum_{k=0}^{N-1} \sum_{n=-k}^{k} \widehat{f}(n) e^{i n x}
\end{aligned}
$$

Changing the order of summation gives

$$
\begin{aligned}
\sigma_{N} f(x) & =\frac{1}{N} \sum_{k=0}^{N-1} \sum_{n=-k}^{k} \widehat{f}(n) e^{i n x} \\
& =\frac{1}{N} \sum_{n=-(N-1)}^{N-1} \sum_{k=|n|}^{N-1} \widehat{f}(n) e^{i n x} \\
& =\sum_{n=-(N-1)}^{N-1}\left(\frac{N-|n|}{N}\right) \widehat{f}(n) e^{i n x}
\end{aligned}
$$

Exercise 2. Show that Theorem 3.15 of lectures does not hold if $p=\infty$, i.e. there is $f \in L^{\infty}(-\pi, \pi)$ such that $\left\|f-\sigma_{N} f\right\|_{L^{\infty}(-\pi, \pi)} \nrightarrow 0$ as $N \rightarrow \infty$.

Solution 2. We choose f to be the sign function, in other words,

$$
f(x)= \begin{cases}1, & \text { if } 0<x<\pi \\ 0, & \text { if } x=0 \\ -1, & \text { if }-\pi<x<0\end{cases}
$$

Now we know that the trigonometric polynomial $\sigma_{N} f$ is continuous for any N. We will show that for any continuous function $g \in C(-\pi, \pi)$, we have $\|f-g\|_{L^{\infty}(-\pi, \pi)} \geq 1 / 2$: this would prove the claim.
Let g be a continuous function $g \in C(-\pi, \pi)$. As g is continuous at 0 , we can find $0<\delta<\pi$ such that

$$
|g(x)-g(0)|<1 / 2 \quad \text { whenever }|x|<\delta
$$

First assume $g(0) \geq 0$ Now for any $-\delta<x<0$ we can apply triangle inequality to get $|g(x)-f(x)|=|g(x)-g(0)+g(0)+1| \geq|g(0)+1|-|g(x)-g(0)| \geq|g(0)+1|-1 / 2 \geq 1 / 2$.

As the set $(-\delta, 0)$ has measure $\delta>0$, we get $\|f-g\|_{L^{\infty}(-\pi, \pi)} \geq 1 / 2$. Similarly, if $g(0)<0$, for $0<x<\delta$ we have
$|g(x)-f(x)|=|g(x)-g(0)+g(0)-1| \geq|g(0)-1|-|g(x)-g(0)| \geq|g(0)-1|-1 / 2 \geq 1 / 2$
and the set $(0, \delta)$ has measure $\delta>0$.
Remark. We can actually show that the space of continuous periodic functions $C_{\#}(-\pi, \pi)$ (or, to be precise, the space of their equivalence classes) is a closed subspace $L^{\infty}(-\pi, \pi)$.
Remark. Additionally, for any measurable set $A \in[-\pi, \pi)$, we could use the characteristic function of A, denoted by χ_{A}, as a counterexample if the Lebesgue measure $m(A)$ of A satisfies $0<m(A)<2 \pi$. To see this, we consider following disjoint sets, analogous to the topological interior, exterior and boundary:

$$
\begin{aligned}
& \operatorname{int}_{m}(A)=\{x \in[-\pi, \pi): x \text { has an open neighbourhood } V \text { with } m(V \backslash A)=0\} \\
& \operatorname{ext}_{m}(A)=\{x \in[-\pi, \pi): x \text { has an open neighbourhood } V \text { with } m(V \cap A)=0\}
\end{aligned}
$$

$\partial_{m}(A)=\{x \in[-\pi, \pi)$: for all open neighbourhoods V of x we have $0<m(V \cap A)<m(V)\}$
As both $\operatorname{int}_{m}(A)$ and $\operatorname{ext}_{m}(A)$ are open and $[-\pi, \pi)$ is connected, we know that $\partial_{m}(A)$ can be empty only if either $\operatorname{int}_{m}(A)$ or $\operatorname{ext}_{m}(A)$ is the whole $[-\pi, \pi)$. But if $i n t_{m}(A)=$ $[-\pi, \pi)$, then we see that $m(A)=2 \pi$ against the assumption on measure of A. A similar contradiction follows for $\operatorname{ext}_{m}(A)=[-\pi, \pi)$. We may therefore pick a point $x \in \partial_{m}(A)$ and do the same argument as before.

Exercise 3. (i) Assume that $f \in L^{1}(-\pi, \pi)$ is odd i.e. $f(-x)=-f(x)$. Show that then the Fourier series of f is a pure sine series, i.e. can be expressed in terms of functions $\sin (n x)$, $n \in \mathbb{Z}$.
(ii) Conversely, if the Fourier series of $f \in L^{1}(-\pi, \pi)$ can be written as a sine series, deduce that $f(-x)=-f(x)$ almost surely for all $x \in(-\pi, \pi)$.

Solution 3. (i) Suppose f is odd. We use a substitution $t=-x$ compute that

$$
\widehat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n x} f(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i n t} f(-t) d t=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i(-n t)} f(t) d t=-\widehat{f}(-n) .
$$

This computation also shows that $\widehat{f}(0)=-\widehat{f}(0)$, so $\widehat{f}(0)=0$. Let us now show that the Fourier series of f consists only of sine functions. As

$$
\sin (x)=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)
$$

we may represent the Fourier series as

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} \widehat{f}(n) e^{i n x} & =\sum_{n=1}^{\infty}\left(\widehat{f}(n) e^{i n x}+\widehat{f}(-n) e^{-i n x}\right) \\
& =\sum_{n=1}^{\infty} \widehat{f}(n)\left(e^{i n x}-e^{-i n x}\right) \\
& =\sum_{n=1}^{\infty} 2 i \widehat{f}(n) \sin (n x)
\end{aligned}
$$

(ii) We see that if the Fourier series of f can be written as a sine series, then

$$
\begin{aligned}
f(x) & \sim \sum_{n=1}^{\infty} a_{n} \sin (n x) \\
& =\sum_{n=1}^{\infty} \frac{a_{n}}{2 i}\left(e^{i n x}-e^{-i n x}\right) \\
& =\sum_{n=1}^{\infty} \frac{a_{n}}{2 i} e^{i n x}-\sum_{n=-\infty}^{-1} \frac{a_{-n}}{2 i} e^{i n x}
\end{aligned}
$$

This means that $\widehat{f}(-n)=-\widehat{f}(n)$ for any integer n.
Define a function g by setting $g(x)=-f(-x)$. Then $g \in L^{1}(-\pi, \pi)$ and we can find its Fourier coefficients as

$$
\begin{aligned}
\widehat{g}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(x) e^{-i n x} d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}-f(-x) e^{-i n x} d x \\
& =-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{i n x} d x \\
& =-\widehat{f}(-n)=\widehat{f}(n)
\end{aligned}
$$

Now we have obtained that $\widehat{g}(n)=\widehat{f}(n)$ for any integer n. By Theorem 3.16, we have $f(x)=g(x)$ for almost every $x \in(-\pi, \pi)$, so $f(-x)=-f(x)$ for almost every $x \in(-\pi, \pi)$.

Exercise 4. Define $f:[-\pi, \pi) \rightarrow \mathbb{R}$ by setting $f(x)=\cos (x / 2)$. Compute the Fourier series of f. Does the Fourier series of f converge at every point ? Does it converge at zero? If so, what identity do you get by substituting $x=0$?

Solution 4. We compute the Fourier coefficients:

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n x} \cos (x / 2) d x \\
& =\frac{1}{4 \pi} \int_{-\pi}^{\pi} e^{-i n x}\left(e^{i x / 2}+e^{-i x / 2}\right) d x \\
& =\frac{1}{4 \pi} \int_{-\pi}^{\pi}\left(e^{i x(1 / 2-n)}+e^{-i x(1 / 2+n)}\right) d x \\
& =\frac{1}{4 \pi} \int_{-\pi}^{\pi}\left(\frac{1}{i(1 / 2-n)} e^{i x(1 / 2-n)}+\frac{1}{-i(1 / 2+n)} e e^{-i x(1 / 2+n)}\right) \\
& =\frac{1}{2 \pi i(1-2 n)}\left(e^{i \pi(1 / 2-n)}-e^{-i \pi(1 / 2-n)}\right)+\frac{1}{-2 \pi i(1+2 n)}\left(e^{-i \pi(1 / 2+n)}-e^{i \pi(1 / 2+n)}\right) \\
& =\frac{1}{2 \pi i(1-2 n)}\left(i e^{-i \pi n}+i e^{i \pi n}\right)+\frac{1}{2 \pi i(1+2 n)}\left(i e^{-i \pi n}+e^{i \pi n}\right) \\
& =\frac{1}{2 \pi i(1-2 n)} 2 i(-1)^{n}+\frac{1}{2 \pi i(1+2 n)} 2 i(-1)^{n} \\
& =\frac{(-1)^{n}}{\pi}\left(\frac{1}{1-2 n}+\frac{1}{1+2 n}\right) \\
& =\frac{2(-1)^{n}}{\pi\left(1-4 n^{2}\right)}
\end{aligned}
$$

These Fourier coefficients converge quickly enough to zero as $n \rightarrow \infty$ to make the Fourier series of f absolutely summable. Since f is also continuous, we can deduce again by Theorem 2.8 that the Fourier series converges uniformly to f. At $x=0$ we have the identity

$$
\sum_{n=-\infty}^{\infty} \frac{2(-1)^{n}}{\pi\left(1-4 n^{2}\right)}=\cos (0 / 2)=1
$$

As a curiosity, one could also deduce from this that

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{1-4 n^{2}}=\frac{2+\pi}{4}
$$

Exercise 5. Define $f(x)=0$ for $x \in[-\pi, 0], f(x)=\pi-x$ for $x \in[0, \pi)$, and extend f to 2π-perodic function. Compute the Fourier series of f. In which points does the Fourier series of the function $f(x)$ converge and to what value?

Solution 5. We compute the Fourier coefficients. First, if $n=0$, we have

$$
\begin{aligned}
\widehat{f}(0) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \\
& =\frac{1}{2 \pi} \int_{0}^{\pi}(\pi-x) d x \\
& =\frac{\pi}{2}-\frac{1}{2 \pi} \int_{0}^{\pi} x d x \\
& =\frac{\pi}{4}
\end{aligned}
$$

For $n \neq 0$, we can use integration by parts:

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x \\
& =\frac{1}{2 \pi} \int_{0}^{\pi}(\pi-x) e^{-i n x} d x \\
& =\frac{1}{2} \int_{0}^{\pi} e^{-i n x} d x-\frac{1}{2 \pi} \int_{0}^{\pi} x e^{-i n x} d x \\
& =\frac{1}{-2 i n}\left(e^{-i n \pi}-1\right)-\frac{1}{2 \pi}\left(\pi \frac{1}{-i n} e^{-i n \pi}-\int_{0}^{\pi} \frac{1}{-i n} e^{-i n x} d x\right) \\
& =\frac{i}{2 n}\left((-1)^{n}-1\right)-\frac{i}{2 n}(-1)^{n}+\frac{1}{2 \pi} \int_{0}^{\pi} \frac{1}{-i n} e^{-i n x} d x \\
& =\frac{-i}{2 n}+\frac{-1}{2 \pi n^{2}}\left(e^{-i n \pi}-1\right) \\
& =\frac{-i}{2 n}+\frac{1-(-1)^{n}}{2 \pi n^{2}}
\end{aligned}
$$

The simplest way to see that the Fourier series converges everywhere is by using Dini's criterion. We define function $g:[-\pi, \pi] \rightarrow \mathbb{C}$ by setting $g(0)=\pi / 2$ and $g(x)=f(x)$ for any $x \neq 0$. As g and f coincide almost everywhere, they have the same Fourier coefficients. After extending g to be 2π-periodic, we will show that for any $x_{0} \in[-\pi, \pi]$, Dini's criterion holds at x_{0} so the Fourier series converges to $g\left(x_{0}\right)$.
For $-\pi<x_{0}<0$, write $\delta=\min \left(x_{0}+\pi,-x_{0}\right)$. We have $g\left(x_{0}+t\right)=0$ whenever $|t|<\delta$, so we get

$$
\int_{0}^{\pi}\left|\frac{g\left(x_{0}+t\right)+g\left(x_{0}-t\right)}{2}-g\left(x_{0}\right)\right| \frac{d t}{t} \leq \frac{1}{\delta} \int_{\delta}^{\pi}\left|\frac{g\left(x_{0}+t\right)+g\left(x_{0}-t\right)}{2}-g\left(x_{0}\right)\right| d t<\infty
$$

For $0<x_{0}<\pi$ write $\delta=\min \left(\pi-x_{0}, x_{0}\right)$. We have $g\left(x_{0}+t\right)=\pi-\left(x_{0}+t\right)$ whenever $|t|<\delta$, so we get

$$
\begin{aligned}
\int_{0}^{\pi}\left|\frac{g\left(x_{0}+t\right)+g\left(x_{0}-t\right)}{2}-g\left(x_{0}\right)\right| \frac{d t}{t} \leq & \int_{0}^{\delta}\left|\frac{\pi-\left(x_{0}+t\right)+\pi-\left(x_{0}-t\right)}{2}-\left(\pi-x_{0}\right)\right| \frac{d t}{t} \\
& +\frac{1}{\delta} \int_{\delta}^{\pi}\left|\frac{g\left(x_{0}+t\right)+g\left(x_{0}-t\right)}{2}-g\left(x_{0}\right)\right| d t<\infty
\end{aligned}
$$

For $x_{0}=0$ we have

$$
\int_{0}^{\pi}\left|\frac{g(t)+g(-t)}{2}-g(0)\right| \frac{d t}{t}=\int_{0}^{\pi}\left|\frac{\pi-t}{2}-\frac{\pi}{2}\right| \frac{d t}{t}=\int_{0}^{\pi} \frac{1}{2} d t=\frac{\pi}{2}<\infty
$$

For $x_{0}=\pi$ we have

$$
\int_{0}^{\pi}\left|\frac{g(\pi+t)+g(\pi-t)}{2}-g(\pi)\right| \frac{d t}{t}=\int_{0}^{\pi}\left|\frac{\pi-(\pi-t)}{2}\right| \frac{d t}{t}=\int_{0}^{\pi} \frac{1}{2} d t=\frac{\pi}{2}<\infty
$$

We have obtained that the Fourier series of f converges everywhere on the interval $[-\pi, \pi]$. For $x \neq 0$ it converges to $f(x)$ and it converges to $\frac{\pi}{2}$ at 0 .

Exercise 6. Let $\left(K_{n}\right)_{n \geq 1}$ be a good sequence of kernels on the interval $(-\pi, \pi)$ (especially, the functions K_{n} are 2π-periodic). Prove in detail Theorem 3.10 in case $p=1$, or in other words, that for every $g \in L^{1}(-\pi, \pi)$ it holds that

$$
\lim _{n \rightarrow \infty}\left\|g-K_{n} * g\right\|_{L^{1}(-\pi, \pi)}=0
$$

Solution 6. Let $\left(K_{n}\right)_{n \geq 1}$ be a good family of kernels, and $g \in L^{1}(-\pi, \pi)$. We first write

$$
\begin{aligned}
\left\|g-K_{n} * g\right\|_{L^{1}(-\pi, \pi)} & =\int_{-\pi}^{\pi}\left|g(x)-\left(K_{n} * g\right)(x)\right| d x \\
& =\int_{-\pi}^{\pi}\left|g(x)-\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n}(y) g(x-y) d y\right| d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\int_{-\pi}^{\pi} g(x)-K_{n}(y) g(x-y) d y\right| d x
\end{aligned}
$$

Using the fact that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n}(y) d y=1
$$

we may write

$$
\begin{aligned}
\left\|g-K_{n} * g\right\|_{L^{1}(-\pi, \pi)} & \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi}\left|g(x)-g(x-y) \| K_{n}(y)\right| d y d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|K_{n}(y)\right| \int_{-\pi}^{\pi}|g(x)-g(x-y)| d x d y
\end{aligned}
$$

We know from real analysis that

$$
\lim _{y \rightarrow 0} \int_{-\pi}^{\pi}|g(x)-g(x-y)| d x=0
$$

Let $\varepsilon>0$ be arbitrary. Choose $\delta>0$ such that

$$
\int_{-\pi}^{\pi}|g(x)-g(x-y)| d x<\varepsilon
$$

for all $y \in(-\delta, \delta)$. Applying triangle inequality we get the estimate

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|g(x)-g(x-y)| d x \leq 2\|g\|_{L^{1}(-\pi, \pi)} .
$$

Combining these estimates with the calculations above gives

$$
\begin{aligned}
\left\|g-K_{n} * g\right\|_{L^{1}(-\pi, \pi)} \leq & \frac{1}{2 \pi} \int_{-\delta}^{\delta}\left|K_{n}(y)\right| \int_{-\pi}^{\pi}|g(x)-g(x-y)| d x d y \\
& +\frac{1}{2 \pi} \int_{|y|>\delta}\left|K_{n}(y)\right| \int_{-\pi}^{\pi}|g(x)-g(x-y)| d x d y \\
\leq & \frac{1}{2 \pi} \int_{-\delta}^{\delta}\left|K_{n}(y)\right| \varepsilon d y+2\|g\|_{L^{1}(-\pi, \pi)} \int_{|y|>\delta}\left|K_{n}(y)\right| d y .
\end{aligned}
$$

Now because K_{n} is a good sequence of kernels,

$$
\varepsilon \frac{1}{2 \pi} \int_{-\delta}^{\delta}\left|K_{n}(y)\right| d y \leq C \varepsilon
$$

for some constant $C>0$. Addiotionally for all sufficiently large n we have

$$
2\|g\|_{L^{1}} \int_{|y|>\delta}\left|K_{n}(y)\right| d y \leq \varepsilon
$$

So we have

$$
\left\|g-K_{n} * g\right\|_{L^{1}(-\pi, \pi)} \leq(C+1) \varepsilon
$$

for large enough n. Because $\varepsilon>0$ is arbitrary, the claim follows.

Exercise 7* ${ }^{*}$. Use the results of lectures so far to prove rigorously that every function f : $[0, \pi] \rightarrow \mathbb{C}$ that is Hölder-continuous (i.e. $|f(x)-f(y)| \leq C|x-y|^{\alpha}$ for some $\left.\alpha \in(0,1]\right)$ and satisfies $f(0)=f(\pi)=0$ can at each point $x \in[0, \pi]$ be expressed as a convergent sine series

$$
f(x)=\sum_{k=1}^{\infty} c_{k} \sin (k x) .
$$

Find an expression for the coefficients of c_{k}.
Solution 7^{*}. Let us continue f on the interval $[-\pi, \pi]$ by setting $f(x)=-f(-x)$ when $-\pi \leq x \leq 0$, so f is an odd function. Now by Exercise 3 we can represent the Fourier series of f as a sine series

$$
f(x) \sim \sum_{n=1}^{\infty} 2 i \widehat{f}(n) \sin (n x)
$$

The coeffients of the sine series are given by

$$
\begin{aligned}
c_{n} & =2 i \widehat{f}(n)=\frac{i}{\pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x \\
& =\frac{i}{\pi} \int_{-\pi}^{0} f(x) e^{-i n x} d x+\frac{i}{\pi} \int_{0}^{\pi} f(x) e^{-i n x} d x \\
& =\frac{i}{\pi} \int_{0}^{\pi} f(x)\left(e^{-i n x}-e^{i n x}\right) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x .
\end{aligned}
$$

We now consider the convergence of the Fourier series. We apply Dini's criterion. For $0<x_{0}<\pi$, writing $\delta=\min (x, \pi-x)$ we have

$$
\begin{aligned}
\int_{0}^{\pi}\left|\frac{f\left(x_{0}+t\right)+f\left(x_{0}-t\right)}{2}-f\left(x_{0}\right)\right| \frac{d t}{t}= & \int_{0}^{\delta}\left|\frac{f\left(x_{0}+t\right)+f\left(x_{0}-t\right)}{2}-f\left(x_{0}\right)\right| \frac{d t}{t} \\
& +\int_{\delta}^{\pi}\left|\frac{f\left(x_{0}+t\right)+f\left(x_{0}-t\right)}{2}-f\left(x_{0}\right)\right| \frac{d t}{t} \\
\leq & \int_{0}^{\delta} \frac{\left|f\left(x_{0}+t\right)-f\left(x_{0}\right)\right|+\left|f\left(x_{0}-t\right)-f\left(x_{0}\right)\right|}{2} \frac{d t}{t} \\
& +\frac{1}{\delta} \int_{\delta}^{\pi} \frac{\left|f\left(x_{0}+t\right)\right|+\left|f\left(x_{0}-t\right)\right|}{2}+\left|f\left(x_{0}\right)\right| d t \\
\leq & \int_{0}^{\delta} C t^{\alpha-1} d t+\frac{1}{\delta}\left(\pi\left|f\left(x_{0}\right)\right|+2 \int_{0}^{\pi}|f(t)| d t\right)<\infty
\end{aligned}
$$

This proves that the Fourier series converges to $f\left(x_{0}\right)$. As $\sin (n \pi)=0$ for any integer n, we have shown that f can be represented as a convergent sine series

$$
f(x)=\sum_{k=1}^{\infty} c_{k} \sin (k x) .
$$

with coefficients

$$
c_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x
$$

