FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 2

Exercise 1. (i) Show that if there exist the limit $A := \lim_{n \to \infty} a_n$, then also

$$\lim_{N \to \infty} \frac{a_0 + a_1 + \dots + a_{n-1}}{N} = A$$

(ii) Use part (i) to verify that if the series $\sum_{n=0}^{\infty} b_n$ converges and has sum *S*, then it is also Cesaro summable, i.e. if $s_n := \sum_{k=0}^n b_n$, we have

$$S = \lim_{N \to \infty} \frac{s_0 + s_1 + \ldots + s_{n-1}}{N}.$$

Show by a counter example that the converse is not true.

(iii) Show that for Fourier series of given integrable function f the Fejer partial sum takes the form

$$\sigma_N f(x) = \sum_{n=-(N-1)}^{N-1} \left(\frac{N-|n|}{N}\right) \widehat{f}(n) e^{inx}.$$

Solution 1. (i) Suppose that the limit $A := \lim_{n \to \infty} a_n$ exists and fix $\varepsilon > 0$. Because the limit exists, we can find N_0 such that $|a_n - A| < \varepsilon$ for any $n > N_0$. For any $N > N_0$ we have

$$\begin{aligned} \left| \frac{a_0 + a_1 + \ldots + a_{N-1}}{N} - A \right| &\leq \left| \frac{a_0 + a_1 + \ldots + a_{N_0} - N_0 A}{N} \right| \\ &+ \frac{|a_{N_0+1} - A| + \ldots + |a_{N-1} - A|}{N} \\ &\leq \frac{|\sum_{n=0}^{N_0} a_n| + |A|(N_0 + 1)}{N} + \frac{(N - N_0 - 1)\varepsilon}{N} \\ &\leq \frac{|\sum_{n=0}^{N_0} a_n| + |A|(N_0 + 1)}{N} + \varepsilon \end{aligned}$$

As the constant $C = |\sum_{n=0}^{N_0} a_n| + |A|(N_0+1)$ does not depend on N, we have that $C/N < \varepsilon$ for sufficiently large N. As ε was arbitrary, this proves that

$$\lim_{N \to \infty} \frac{a_0 + a_1 + \dots + a_{N-1}}{N} = A$$

(ii) Suppose that the series $\sum_{n=0}^{\infty} b_n$ converges and has sum *S*. This means that if we denote $s_N = \sum_{n=0}^{N} b_n$, we have $S = \lim_{N \to \infty} s_N$. By applying (i), we obtain immediately

$$S = \lim_{N \to \infty} \frac{s_0 + s_1 + \dots + s_{N-1}}{N}$$

As a counterexample, consider the sequence $b_n = (-1)^n$. The partial sums are $s_N = \sum_{n=0}^{N} b_n = (1 + (-1)^N)/2$. As all the partial sums are alternatingly 1 or 0, the series is not summable. However, it is Cesaro summable: for even N, we have

$$\frac{s_0 + \ldots + s_{N-1}}{N} = \frac{N/2}{N} = \frac{1}{2}$$

and for odd N

$$\frac{s_0 + \ldots + s_{N-1}}{N} = \frac{(N+1)/2}{N} = \frac{1}{2} + \frac{1}{2N} \to \frac{1}{2}$$

(iii) We can directly compute

$$\sigma_N f(x) = \frac{1}{N} \sum_{k=0}^{N-1} S_k f(x)$$
$$= \frac{1}{N} \sum_{k=0}^{N-1} \sum_{n=-k}^{k} \widehat{f}(n) e^{inx}$$

Changing the order of summation gives

$$\sigma_N f(x) = \frac{1}{N} \sum_{k=0}^{N-1} \sum_{n=-k}^{k} \widehat{f}(n) e^{inx}$$
$$= \frac{1}{N} \sum_{n=-(N-1)}^{N-1} \sum_{k=|n|}^{N-1} \widehat{f}(n) e^{inx}$$
$$= \sum_{n=-(N-1)}^{N-1} \left(\frac{N-|n|}{N}\right) \widehat{f}(n) e^{inx}$$

Exercise 2. Show that Theorem 3.15 of lectures does not hold if $p = \infty$, i.e. there is $f \in L^{\infty}(-\pi,\pi)$ such that $||f - \sigma_N f||_{L^{\infty}(-\pi,\pi)} \neq 0$ as $N \to \infty$.

Solution 2. We choose f to be the sign function, in other words,

$$f(x) = \begin{cases} 1, & \text{if } 0 < x < \pi \\ 0, & \text{if } x = 0 \\ -1, & \text{if } -\pi < x < 0 \end{cases}$$

Now we know that the trigonometric polynomial $\sigma_N f$ is continuous for any N. We will show that for any continuous function $g \in C(-\pi, \pi)$, we have $||f - g||_{L^{\infty}(-\pi,\pi)} \ge 1/2$: this would prove the claim.

Let g be a continuous function $g \in C(-\pi, \pi)$. As g is continuous at 0, we can find $0 < \delta < \pi$ such that

$$|g(x) - g(0)| < 1/2 \qquad \text{whenever } |x| < \delta.$$

First assume $g(0) \ge 0$ Now for any $-\delta < x < 0$ we can apply triangle inequality to get

$$|g(x) - f(x)| = |g(x) - g(0) + g(0) + 1| \ge |g(0) + 1| - |g(x) - g(0)| \ge |g(0) + 1| - 1/2 \ge 1/2.$$

As the set $(-\delta, 0)$ has measure $\delta > 0$, we get $||f - g||_{L^{\infty}(-\pi,\pi)} \ge 1/2$. Similarly, if g(0) < 0, for $0 < x < \delta$ we have

$$|g(x) - f(x)| = |g(x) - g(0) + g(0) - 1| \ge |g(0) - 1| - |g(x) - g(0)| \ge |g(0) - 1| - 1/2 \ge 1/2$$

and the set $(0, \delta)$ has measure $\delta > 0$.

Remark. We can actually show that the space of continuous periodic functions $C_{\#}(-\pi,\pi)$ (or, to be precise, the space of their equivalence classes) is a closed subspace $L^{\infty}(-\pi,\pi)$.

Remark. Additionally, for any measurable set $A \in [-\pi, \pi)$, we could use the characteristic function of A, denoted by χ_A , as a counterexample if the Lebesgue measure m(A) of A satisfies $0 < m(A) < 2\pi$. To see this, we consider following disjoint sets, analogous to the topological interior, exterior and boundary:

 $int_m(A) = \{x \in [-\pi, \pi) : x \text{ has an open neighbourhood } V \text{ with } m(V \setminus A) = 0\}$

$$ext_m(A) = \{x \in [-\pi, \pi) : x \text{ has an open neighbourhood } V \text{ with } m(V \cap A) = 0\}$$

 $\partial_m(A) = \{x \in [-\pi, \pi) : \text{for all open neighbourhoods } V \text{ of } x \text{ we have } 0 < m(V \cap A) < m(V)\}$

As both $int_m(A)$ and $ext_m(A)$ are open and $[-\pi,\pi)$ is connected, we know that $\partial_m(A)$ can be empty only if either $int_m(A)$ or $ext_m(A)$ is the whole $[-\pi,\pi)$. But if $int_m(A) = [-\pi,\pi)$, then we see that $m(A) = 2\pi$ against the assumption on measure of A. A similar contradiction follows for $ext_m(A) = [-\pi,\pi)$. We may therefore pick a point $x \in \partial_m(A)$ and do the same argument as before.

Exercise 3. (i) Assume that $f \in L^1(-\pi, \pi)$ is odd i.e. f(-x) = -f(x). Show that then the Fourier series of f is a pure sine series, i.e. can be expressed in terms of functions $\sin(nx)$, $n \in \mathbb{Z}$.

(ii) Conversely, if the Fourier series of $f \in L^1(-\pi, \pi)$ can be written as a sine series, deduce that f(-x) = -f(x) almost surely for all $x \in (-\pi, \pi)$.

Solution 3. (i) Suppose f is odd. We use a substitution t = -x compute that

$$\widehat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} f(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{int} f(-t) dt = -\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(-nt)} f(t) dt = -\widehat{f}(-n).$$

This computation also shows that $\hat{f}(0) = -\hat{f}(0)$, so $\hat{f}(0) = 0$. Let us now show that the Fourier series of f consists only of sine functions. As

$$\sin(x) = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right)$$

we may represent the Fourier series as

$$\sum_{n=-\infty}^{\infty} \widehat{f}(n)e^{inx} = \sum_{n=1}^{\infty} \left(\widehat{f}(n)e^{inx} + \widehat{f}(-n)e^{-inx}\right)$$
$$= \sum_{n=1}^{\infty} \widehat{f}(n) \left(e^{inx} - e^{-inx}\right)$$
$$= \sum_{n=1}^{\infty} 2i\widehat{f}(n)\sin(nx)$$

(ii) We see that if the Fourier series of f can be written as a sine series, then

$$f(x) \sim \sum_{n=1}^{\infty} a_n \sin(nx)$$
$$= \sum_{n=1}^{\infty} \frac{a_n}{2i} (e^{inx} - e^{-inx})$$
$$= \sum_{n=1}^{\infty} \frac{a_n}{2i} e^{inx} - \sum_{n=-\infty}^{-1} \frac{a_{-n}}{2i} e^{inx}$$

This means that $\widehat{f}(-n) = -\widehat{f}(n)$ for any integer n.

Define a function g by setting g(x) = -f(-x). Then $g \in L^1(-\pi, \pi)$ and we can find its Fourier coefficients as

$$\widehat{g}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(x) e^{-inx} dx$$

= $\frac{1}{2\pi} \int_{-\pi}^{\pi} -f(-x) e^{-inx} dx$
= $-\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{inx} dx$
= $-\widehat{f}(-n) = \widehat{f}(n)$

Now we have obtained that $\widehat{g}(n) = \widehat{f}(n)$ for any integer n. By Theorem 3.16, we have f(x) = g(x) for almost every $x \in (-\pi, \pi)$, so f(-x) = -f(x) for almost every $x \in (-\pi, \pi)$.

Exercise 4. Define $f : [-\pi, \pi) \to \mathbb{R}$ by setting $f(x) = \cos(x/2)$. Compute the Fourier series of f. Does the Fourier series of f converge at every point? Does it converge at zero? If so, what identity do you get by substituting x = 0?

Solution 4. We compute the Fourier coefficients:

$$\begin{split} \widehat{f}(n) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} \cos(x/2) \, dx \\ &= \frac{1}{4\pi} \int_{-\pi}^{\pi} e^{-inx} \left(e^{ix/2} + e^{-ix/2} \right) \, dx \\ &= \frac{1}{4\pi} \int_{-\pi}^{\pi} \left(e^{ix(1/2-n)} + e^{-ix(1/2+n)} \right) \, dx \\ &= \frac{1}{4\pi} \int_{-\pi}^{\pi} \left(\frac{1}{i(1/2-n)} e^{ix(1/2-n)} + \frac{1}{-i(1/2+n)} e^{e^{-ix(1/2+n)}} \right) \\ &= \frac{1}{2\pi i(1-2n)} \left(e^{i\pi(1/2-n)} - e^{-i\pi(1/2-n)} \right) + \frac{1}{-2\pi i(1+2n)} \left(e^{-i\pi(1/2+n)} - e^{i\pi(1/2+n)} \right) \\ &= \frac{1}{2\pi i(1-2n)} \left(ie^{-i\pi n} + ie^{i\pi n} \right) + \frac{1}{2\pi i(1+2n)} \left(ie^{-i\pi n} + e^{i\pi n} \right) \\ &= \frac{1}{2\pi i(1-2n)} 2i(-1)^n + \frac{1}{2\pi i(1+2n)} 2i(-1)^n \\ &= \frac{(-1)^n}{\pi} \left(\frac{1}{1-2n} + \frac{1}{1+2n} \right) \\ &= \frac{2(-1)^n}{\pi(1-4n^2)} \end{split}$$

These Fourier coefficients converge quickly enough to zero as $n \to \infty$ to make the Fourier series of f absolutely summable. Since f is also continuous, we can deduce again by Theorem 2.8 that the Fourier series converges uniformly to f. At x = 0 we have the identity

$$\sum_{n=-\infty}^{\infty} \frac{2(-1)^n}{\pi(1-4n^2)} = \cos(0/2) = 1.$$

As a curiosity, one could also deduce from this that

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{1-4n^2} = \frac{2+\pi}{4}.$$

Exercise 5. Define f(x) = 0 for $x \in [-\pi, 0]$, $f(x) = \pi - x$ for $x \in [0, \pi)$, and extend f to 2π -perodic function. Compute the Fourier series of f. In which points does the Fourier series of the function f(x) converge and to what value?

Solution 5. We compute the Fourier coefficients. First, if n = 0, we have

$$\widehat{f}(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx$$
$$= \frac{1}{2\pi} \int_{0}^{\pi} (\pi - x) \, dx$$
$$= \frac{\pi}{2} - \frac{1}{2\pi} \int_{0}^{\pi} x \, dx$$
$$= \frac{\pi}{4}$$

For $n \neq 0$, we can use integration by parts:

$$\begin{split} \widehat{f}(n) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} \, dx \\ &= \frac{1}{2\pi} \int_{0}^{\pi} (\pi - x) e^{-inx} \, dx \\ &= \frac{1}{2} \int_{0}^{\pi} e^{-inx} \, dx - \frac{1}{2\pi} \int_{0}^{\pi} x e^{-inx} \, dx \\ &= \frac{1}{-2in} (e^{-in\pi} - 1) - \frac{1}{2\pi} \left(\pi \frac{1}{-in} e^{-in\pi} - \int_{0}^{\pi} \frac{1}{-in} e^{-inx} \, dx \right) \\ &= \frac{i}{2n} ((-1)^{n} - 1) - \frac{i}{2n} (-1)^{n} + \frac{1}{2\pi} \int_{0}^{\pi} \frac{1}{-in} e^{-inx} \, dx \\ &= \frac{-i}{2n} + \frac{-1}{2\pi n^{2}} \left(e^{-in\pi} - 1 \right) \\ &= \frac{-i}{2n} + \frac{1 - (-1)^{n}}{2\pi n^{2}} \end{split}$$

The simplest way to see that the Fourier series converges everywhere is by using Dini's criterion. We define function $g: [-\pi, \pi] \to \mathbb{C}$ by setting $g(0) = \pi/2$ and g(x) = f(x) for any $x \neq 0$. As g and f coincide almost everywhere, they have the same Fourier coefficients. After extending g to be 2π -periodic, we will show that for any $x_0 \in [-\pi, \pi]$, Dini's criterion holds at x_0 so the Fourier series converges to $g(x_0)$.

For $-\pi < x_0 < 0$, write $\delta = \min(x_0 + \pi, -x_0)$. We have $g(x_0 + t) = 0$ whenever $|t| < \delta$, so we get

$$\int_0^{\pi} \left| \frac{g(x_0+t) + g(x_0-t)}{2} - g(x_0) \right| \frac{dt}{t} \le \frac{1}{\delta} \int_{\delta}^{\pi} \left| \frac{g(x_0+t) + g(x_0-t)}{2} - g(x_0) \right| dt < \infty$$

For $0 < x_0 < \pi$ write $\delta = \min(\pi - x_0, x_0)$. We have $g(x_0 + t) = \pi - (x_0 + t)$ whenever $|t| < \delta$, so we get

$$\int_{0}^{\pi} \left| \frac{g(x_{0}+t) + g(x_{0}-t)}{2} - g(x_{0}) \right| \frac{dt}{t} \leq \int_{0}^{\delta} \left| \frac{\pi - (x_{0}+t) + \pi - (x_{0}-t)}{2} - (\pi - x_{0}) \right| \frac{dt}{t} + \frac{1}{\delta} \int_{\delta}^{\pi} \left| \frac{g(x_{0}+t) + g(x_{0}-t)}{2} - g(x_{0}) \right| dt < \infty$$

For $x_0 = 0$ we have

$$\int_0^{\pi} \left| \frac{g(t) + g(-t)}{2} - g(0) \right| \frac{dt}{t} = \int_0^{\pi} \left| \frac{\pi - t}{2} - \frac{\pi}{2} \right| \frac{dt}{t} = \int_0^{\pi} \frac{1}{2} dt = \frac{\pi}{2} < \infty$$

For $x_0 = \pi$ we have

$$\int_0^{\pi} \left| \frac{g(\pi+t) + g(\pi-t)}{2} - g(\pi) \right| \frac{dt}{t} = \int_0^{\pi} \left| \frac{\pi - (\pi-t)}{2} \right| \frac{dt}{t} = \int_0^{\pi} \frac{1}{2} dt = \frac{\pi}{2} < \infty$$

We have obtained that the Fourier series of f converges everywhere on the interval $[-\pi, \pi]$. For $x \neq 0$ it converges to f(x) and it converges to $\frac{\pi}{2}$ at 0.

Exercise 6. Let $(K_n)_{n\geq 1}$ be a good sequence of kernels on the interval $(-\pi, \pi)$ (especially, the functions K_n are 2π -periodic). Prove in detail Theorem 3.10 in case p = 1, or in other words, that for every $g \in L^1(-\pi, \pi)$ it holds that

$$\lim_{n \to \infty} \|g - K_n * g\|_{L^1(-\pi,\pi)} = 0.$$

Solution 6. Let $(K_n)_{n\geq 1}$ be a good family of kernels, and $g \in L^1(-\pi,\pi)$. We first write

$$\begin{aligned} \|g - K_n * g\|_{L^1(-\pi,\pi)} &= \int_{-\pi}^{\pi} |g(x) - (K_n * g)(x)| \, dx \\ &= \int_{-\pi}^{\pi} \left| g(x) - \frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(y) g(x - y) \, dy \right| \, dx \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \int_{-\pi}^{\pi} g(x) - K_n(y) g(x - y) \, dy \right| \, dx \end{aligned}$$

Using the fact that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(y) \, dy = 1$$

we may write

$$||g - K_n * g||_{L^1(-\pi,\pi)} \le \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |g(x) - g(x-y)| |K_n(y)| \, dy \, dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} |K_n(y)| \int_{-\pi}^{\pi} |g(x) - g(x-y)| \, dx \, dy.$$

We know from real analysis that

$$\lim_{y \to 0} \int_{-\pi}^{\pi} |g(x) - g(x - y)| \, dx = 0.$$

Let $\varepsilon > 0$ be arbitrary. Choose $\delta > 0$ such that

$$\int_{-\pi}^{\pi} |g(x) - g(x - y)| \, dx < \varepsilon$$

for all $y \in (-\delta, \delta)$. Applying triangle inequality we get the estimate

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |g(x) - g(x - y)| \, dx \le 2 \|g\|_{L^1(-\pi,\pi)}.$$

Combining these estimates with the calculations above gives

$$\begin{split} \|g - K_n * g\|_{L^1(-\pi,\pi)} &\leq \frac{1}{2\pi} \int_{-\delta}^{\delta} |K_n(y)| \int_{-\pi}^{\pi} |g(x) - g(x-y)| \, dx \, dy \\ &+ \frac{1}{2\pi} \int_{|y| > \delta} |K_n(y)| \int_{-\pi}^{\pi} |g(x) - g(x-y)| \, dx \, dy \\ &\leq \frac{1}{2\pi} \int_{-\delta}^{\delta} |K_n(y)| \varepsilon \, dy + 2\|g\|_{L^1(-\pi,\pi)} \int_{|y| > \delta} |K_n(y)| \, dy. \end{split}$$

Now because K_n is a good sequence of kernels,

$$\varepsilon \frac{1}{2\pi} \int_{-\delta}^{\delta} |K_n(y)| \, dy \le C\varepsilon,$$

for some constant C > 0. Addictionally for all sufficiently large n we have

$$2\|g\|_{L^1} \int_{|y|>\delta} |K_n(y)| \, dy \le \varepsilon.$$

So we have

$$||g - K_n * g||_{L^1(-\pi,\pi)} \le (C+1)\varepsilon$$

for large enough n. Because $\varepsilon > 0$ is arbitrary, the claim follows.

Exercise 7*. Use the results of lectures so far to prove rigorously that every function f: $[0,\pi] \to \mathbb{C}$ that is Hölder-continuous (i.e. $|f(x) - f(y)| \leq C|x - y|^{\alpha}$ for some $\alpha \in (0,1]$) and satisfies $f(0) = f(\pi) = 0$ can at each point $x \in [0,\pi]$ be expressed as a convergent sine series

$$f(x) = \sum_{k=1}^{\infty} c_k \sin(kx).$$

Find an expression for the coefficients of c_k .

Solution 7^{*}. Let us continue f on the interval $[-\pi,\pi]$ by setting f(x) = -f(-x) when $-\pi \le x \le 0$, so f is an odd function. Now by Exercise 3 we can represent the Fourier series of f as a sine series

$$f(x) \sim \sum_{n=1}^{\infty} 2i\widehat{f}(n)\sin(nx).$$

The coefficients of the sine series are given by

$$c_n = 2i\hat{f}(n) = \frac{i}{\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$$

= $\frac{i}{\pi} \int_{-\pi}^{0} f(x)e^{-inx} dx + \frac{i}{\pi} \int_{0}^{\pi} f(x)e^{-inx} dx$
= $\frac{i}{\pi} \int_{0}^{\pi} f(x)(e^{-inx} - e^{inx}) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x)\sin(nx) dx.$

We now consider the convergence of the Fourier series. We apply Dini's criterion. For $0 < x_0 < \pi$, writing $\delta = \min(x, \pi - x)$ we have

$$\begin{split} \int_{0}^{\pi} \left| \frac{f(x_{0}+t)+f(x_{0}-t)}{2} - f(x_{0}) \right| \frac{dt}{t} &= \int_{0}^{\delta} \left| \frac{f(x_{0}+t)+f(x_{0}-t)}{2} - f(x_{0}) \right| \frac{dt}{t} \\ &+ \int_{\delta}^{\pi} \left| \frac{f(x_{0}+t)+f(x_{0}-t)}{2} - f(x_{0}) \right| \frac{dt}{t} \\ &\leq \int_{0}^{\delta} \frac{|f(x_{0}+t)-f(x_{0})| + |f(x_{0}-t)-f(x_{0})|}{2} \frac{dt}{t} \\ &+ \frac{1}{\delta} \int_{\delta}^{\pi} \frac{|f(x_{0}+t)| + |f(x_{0}-t)|}{2} + |f(x_{0})| dt \\ &\leq \int_{0}^{\delta} Ct^{\alpha-1} dt + \frac{1}{\delta} \left(\pi |f(x_{0})| + 2 \int_{0}^{\pi} |f(t)| dt \right) < \infty. \end{split}$$

This proves that the Fourier series converges to $f(x_0)$. As $\sin(n\pi) = 0$ for any integer n, we have shown that f can be represented as a convergent sine series

$$f(x) = \sum_{k=1}^{\infty} c_k \sin(kx).$$

with coefficients

$$c_n = \frac{2}{\pi} \int_0^\pi f(x) \sin(nx) \, dx$$