FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 2

Exercise 1. (i) Show that if there exist the limit A := lim,_,, a,, then also

lim a0+a1—|—...—|—an_1:A

N—o0 N

(ii) Use part (i) to verify that if the series Y ° b, converges and has sum S, then it is
also Cesaro summable, i.e. if s, := >} , b,, we have

. So+S1+...+S1
=1 .
o Nooo N

Show by a counter example that the converse is not true.

(iii) Show that for Fourier series of given integrable function f the Fejer partial sum

takes the form
N—1

ot@= Y (X Fmpe

n=—(N-1)

Solution 1. (i) Suppose that the limit A := lim,,_,, a,, exists and fix € > 0. Because the limit
exists, we can find Ny such that |a, — A| < € for any n > Ny. For any N > N, we have

a0+a1+---+aN—1_A < ap+ay+ ...+ an, — NoA
N - N
+|CLNO+1—A’+...+|CLN_1—A‘
N
el + AN +1) (N = No—1)e
- N N
No

< |Zn:oan|J]rV\A|(No+1)+€

As the constant C' = | 32° a,|+|A|(No+1) does not depend on N, we have that C/N < e
for sufficiently large N. As e was arbitrary, this proves that

hm a0+a1+...+aN_1:A

N—o0 N

(ii) Suppose that the series > ° b, converges and has sum S. This means that if we
denote sy = zg:o b,, we have S = limy_,o, sy. By applying (i), we obtain immediately

. 80+81+...+SN_1
S = lim
N—oo N




As a counterexample, consider the sequence b, = (—1)". The partial sums are sy =

SN b, = (1+ (=1)N)/2. As all the partial sums are alternatingly 1 or 0, the series is

n=0 "N
not summable. However, it is Cesaro summable: for even N, we have

So+...+SN_1_N/2_1
N N 2
and for odd N

80+...+SN_1 (N+1)/2 1 ]_ ]_
= = — _ % —_
N N 2 * 2N 2
(iii) We can directly compute
| Nl
onf(z) = N Sif(x)
k=0
=L
_ N Z (n)eznm
k=0 n=—k
Changing the order of summation gives
T
onf(@) =+ 5 3 Flnjer
k=0 n=—k
N-1 N-1
1 7 wmx
=~ (n)e
n=—(N—1) k=|n]
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N — -
_ ( N\ﬂ\) (n)eine
n=—(N-1)

Exercise 2. Show that Theorem 3.15 of lectures does not hold if p = oo, i.e. there is
f € L>®(—n, ) such that ||f — onf| reo(—mm) 7 0 as N — oo.

Solution 2. We choose f to be the sign function, in other words,

1, f0<xr<m
f(x) =<0, ifxz=0
-1, if —mr<ax<0

Now we know that the trigonometric polynomial oy f is continuous for any N. We will
show that for any continuous function g € C(—m,7), we have || f — g|[roc(—n,x) > 1/2: this
would prove the claim.

Let g be a continuous function g € C(—m, 7). As g is continuous at 0, we can find 0 < 0 < 7
such that
lg(z) — g(0)] < 1/2 whenever |z| < 9.
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First assume ¢(0) > 0 Now for any —J < x < 0 we can apply triangle inequality to get

l9(z) = f (@) = [g(x) = 9(0) +9(0) +1 = [9(0) + 1| = |g(z) —g(0) = [9(0) + 1| =1/2 = 1/2.

As the set (—0,0) has measure § > 0, we get || f — g||poo(—r,r > 1/2. Similarly, if g(0) < 0,
for 0 < z < 0 we have

lg(z) = f(2)| = |g(x) — g(0) +g(0) = 1] > [g(0) — 1| = [g(x) — g(0)| > [g(0) = 1| =1/2 > 1/2

and the set (0,J) has measure 6 > 0.

Remark. We can actually show that the space of continuous periodic functions C(—m, 7)
(or, to be precise, the space of their equivalence classes) is a closed subspace L>®(—m, ).

Remark. Additionally, for any measurable set A € [—7, 7), we could use the characteristic
function of A, denoted by x4, as a counterexample if the Lebesgue measure m(A) of A
satisfies 0 < m(A) < 2w. To see this, we consider following disjoint sets, analogous to the
topological interior, exterior and boundary:

int,,(A) = {x € [=m,7) :  has an open neighbourhood V' with m(V \ A) = 0}

ext,,(A) = {x € [-m, ) : x has an open neighbourhood V' with m(V N A) = 0}
Om(A) ={z € [—m, ) : for all open neighbourhoods V' of z we have 0 < m(VNA) < m(V)}
As both int,,(A) and ext,,(A) are open and [—m,7) is connected, we know that 0,,(A)
can be empty only if either int,,(A) or ext,,(A) is the whole [—7, 7). But if int,,(A) =
[—7, ), then we see that m(A) = 27 against the assumption on measure of A. A similar

contradiction follows for ext,,(A) = [-m, 7). We may therefore pick a point z € 0,,(A)
and do the same argument as before.

Exercise 3. (i) Assume that f € L'(—7,7) is odd i.e. f(—x) = —f(z). Show that then the
Fourier series of f is a pure sine series, i.e. can be expressed in terms of functions sin(nz),
n e Z.

(ii) Conversely, if the Fourier series of f € L'(—m, ) can be written as a sine series,
deduce that f(—z) = —f(z) almost surely for all x € (—m, 7).

Solution 3. (i) Suppose f is odd. We use a substitution t = —z compute that

Fioy = g [ empitn = oo [ empnie= o [ et e = ~fon),

This computation also shows that f(()) = —f(O), Slo) f(O) = 0. Let us now show that the
Fourier series of f consists only of sine functions. As

sin(x) = 1 (e —e™™)



we may represent the Fourier series as

> fnem =
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(ii) We see that if the Fourier series of f can be written as a sine series, then

~ ~

This means that f(—n) = —f(n) for any integer n.

Define a function g by setting g(z) = —f(—x). Then g € L'(—7,7) and we can find its
Fourier coefficients as

i) = 5 [ gta)e ™ da

Com ).

= % /_: —f(—x)e ™" dx
= —% /_: f(z)e™ dx

= ~F(-n) = Flm)

~

Now we have obtained that g(n) = f(n) for any integer n. By Theorem 3.16, we have
f(z) = g(x) for almost every x € (—m, ), so f(—z) = —f(z) for almost every x € (—m, 7).

Exercise 4. Define f : [-m,7) — R by setting f(x) = cos(z/2). Compute the Fourier series
of f. Does the Fourier series of f converge at every point 7 Does it converge at zero? If
so, what identity do you get by substituting x = 07



Solution 4. We compute the Fourier coefficients:

™

f(n) = iﬂ/ e cos(z/2) dx

—T

[ _ . ,
- —inz ( ix/2 —ix/2 d
) © (€2 +e7™?) dx
[ . ,
— E 3 (ezx(l/Q—n) +€—m(1/2+n)) dx
L 1 : 1 .
= — ix(1/2—n) —ix(1/2+n)
47T/ <z’<1/2 —n)" RV R )
= ; (eiw(l/Q—n) _ e—iw(1/2—n)) + ; (6—i7r(1/2+n) . eiw(1/2+n))
2mi(1 = 2n) —2mi(1 + 2n)
S 1 (,L'e—iwn —|—Z'6i7m) + 1 (ie—iwn + ez’wn)
2mi(1 = 2n) 2mi(1 + 2n)
1
= o 52"+ s = 2"
it =2 V" e Y
_ (=D N
T 1—-2n 14+ 2n
_ 2=
(1 — 4n?)

These Fourier coefficients converge quickly enough to zero as n — oo to make the Fourier
series of f absolutely summable. Since f is also continuous, we can deduce again by
Theorem 2.8 that the Fourier series converges uniformly to f. At z = 0 we have the
identity

o0

Z % = cos(0/2) = 1.

n=-—oo

As a curiosity, one could also deduce from this that

io: (- 247
=1 —dn? 4

Exercise 5. Define f(z) = 0 for x € [—m,0], f(z) = 7 —x for x € [0,7), and extend f to
2m-perodic function. Compute the Fourier series of f. In which points does the Fourier
series of the function f(x) converge and to what value?



Solution 5. We compute the Fourier coefficients. First, if n = 0, we have
~ 1 ™
F0) = | ryds
m —T
1 ™

:%/0 (m —x)dx

1 s
-T2 xdx
2 Jo

=13 o

For n # 0, we can use integration by parts:
fy = 5= [ e
n)=— x)e x
2m ) .
1 K

= 5= i (r — x)e ™ dx

[ 1 [" .
= —/ e " dr — —/ xe " dx
2 Jo 2m Jo
1 . 1 1 ’ 1 ,
— : (e—zmr . 1) —— | r— e~inm _ / : e~ T Jo
—2in 27 —in 0 —in

0 ? 1 [ 1 4
- _ln_l___ln o _—znmd
2n(( ) ) 2n( )"+ 27r/0 —me v

—1 —1 .
—_ . —inT _ 1
2n + 2mn? (e )
=i 1= (="
o 2mn?

The simplest way to see that the Fourier series converges everywhere is by using Dini’s
criterion. We define function ¢ : [—m, 7| — C by setting ¢(0) = 7/2 and g(z) = f(x) for
any * # 0. As g and f coincide almost everywhere, they have the same Fourier coefficients.
After extending g to be 2m-periodic, we will show that for any xy € [—m, 7|, Dini’s criterion
holds at x( so the Fourier series converges to g(x).

For —m < zg < 0, write § = min(zo + m, —x¢). We have g(zo +t) = 0 whenever |t| < J, so
we get

/7r dt 1/7r
0 t =49 /s

For 0 < zy < 7 write § = min(r — xg,x0). We have g(z¢ +t) = 7 — (xo + t) whenever
[t| < 0, so we get

g(wo +1t) + g(zo — 1)
2

— (%) g0 1) —12_9(% -0 _ g(xo)| dt < oo




T To To — J ™ — (Xo ™= (Lo —
/o . +t)—;g( t)—g(:co) Citg/o ( +t)—; ( t)_(ﬂ_x@ o
1 [ |g(zo+1t) + g(wo —t)
+5/5 ’ 5 — g(zo)| dt < 0

For xy = 0 we have

Tlg(t) + g(—t dt T
/ g(t) 29( )—9(0)'7:/
0 0
For xo = ™ we have

I il
0 t 0

We have obtained that the Fourier series of f converges everywhere on the interval [—m, 7].
For x # 0 it converges to f(x) and it converges to 7 at 0.

T—t w

2 2

dt /”1 T
— = —dt = — < 0
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g(r+1) +g(m —1t)
2
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Exercise 6. Let (K,),>1 be a good sequence of kernels on the interval (—m, 7) (especially, the
functions K, are 2m-periodic). Prove in detail Theorem 3.10 in case p = 1, or in other
words, that for every g € L'(—m, ) it holds that

lim ||g — Ky * gl 01 (—nm) = 0.
n—oo
Solution 6. Let (K,,),>1 be a good family of kernels, and g € L'(—m, 7). We first write

19 = Ko # gllzi(mm = / 9() — (K % 9) (@) de

™
/ﬂ-
—Tr

g(r) — % /_: K,(y)g(z —y) dy' dx

1 s
5 [ |[ o= Kaiate -y iy o
TJzl|)=n
Using the fact that
1 s
T

—T

we may write



1 T T
o= Kot sllicem < 5= [ [ lote) = oo~ )lIKu)| dy do
—5r | 1K [ lote) - gt~ )l o,

We know from real analysis that

s

lim B l9(z) — g(z — y)| dz = 0.

Let € > 0 be arbitrary. Choose § > 0 such that

/W 19(2) — gla — )| dr < &

for all y € (—4,0). Applying triangle inequality we get the estimate
1 s
o | 19(2) = g(z —y)ldz < 2||g]lr1(mm-

Combining these estimates with the calculations above gives

19 = Ko gllisnm s—/ Kaw)l [ 19(@) = 9(e — y)| dady

1
T S |/ )~ gle — )| de dy
21 Jiy>s

<o [ sy + 2ol e [ 1l
g ly[>6

Now because K, is a good sequence of kernels,

1 )
et / Ko (y)] dy < Ce,
™J_s

for some constant C' > 0. Addiotionally for all sufficiently large n we have

gl [ |Kalw)ldy <=
ly[>6

So we have
Hg — K, * g||L1(—7r,7r) < (C + 1)5

for large enough n. Because € > 0 is arbitrary, the claim follows.



Exercise 7*. Use the results of lectures so far to prove rigorously that every function f :
[0,7] — C that is Holder-continuous (i.e. |f(z) — f(y)| < Clz — y|* for some a € (0, 1])
and satisfies f(0) = f(w) = 0 can at each point x € [0, 7] be expressed as a convergent

sine series
o

f(z) = Z cx sin(kx).

k=1
Find an expression for the coefficients of ¢..

Solution 7*. Let us continue f on the interval [—m, 7] by setting f(x) = —f(—x) when
—m < x <0, s0 fis an odd function. Now by Exercise 3 we can represent the Fourier
series of f as a sine series

Z 24 f ) sin(nx)

The coeffients of the sine series are given by

=2 f / f(z)e ™ dx

= i/ f(z)e ™ da + _/0 f(z)e ™ dx
/ f(z)(e™™ — &™) dx = %/Oﬂ f(z)sin(nz) dx

We now consider the convergence of the Fourier series. We apply Dini’s criterion. For
0 < xy <, writing 6 = min(z, 7 — x) we have

/0” f(a:0+t);f(xo—t) ) %:/0‘5 f(xOth);f(xo—t) ~ f(zo) %
[ (xg+t);f(xo—t)_f(x0) %
/ |f To+t) — (xo)l-;lf(wo—t)—f(wo)lﬂ
t
5/; If(:vo+t)\-2Hf(xo )‘+|f(xg)|dt

0 . 1 T
< [ g (wrl =2 [ o) <o

This proves that the Fourier series converges to f(zo). As sin(nm) = 0 for any integer n,
we have shown that f can be represented as a convergent sine series

[e.9]

E cx sin(kx).

k=1
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with coefficients

™

Cp = — /07r f(z)sin(nz) dx
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