FOURIER ANALYSIS. (Fall 2016)

2. EXERCISES (Fri 30.09, 10-12 in room C322)

1. (i) Show that if there exist the limit $A:=\lim _{n \rightarrow \infty} a_{n}$, then also

$$
\lim _{N \rightarrow \infty} \frac{a_{0}+a_{1}+\ldots+a_{n-1}}{N}=A
$$

(ii) Use part (i) to verify that if the series $\sum_{n=0}^{\infty} b_{n}$ converges and has sum S, then it is also Cesaro summable, i.e. if $s_{n}:=\sum_{k=0}^{n} b_{n}$, we have

$$
S=\lim _{N \rightarrow \infty} \frac{s_{0}+s_{1}+\ldots+s_{n-1}}{N}
$$

Show by a counter example that the converse is not true.
(ii) Show that for Fourier series of given integrable function f the Fejer partial sum takes the form

$$
\sigma_{N} f(x)=\sum_{n=-(N-1)}^{N-1}\left(\frac{N-|n|}{N}\right) \widehat{f}(n) e^{i n x}
$$

2. Show that Theorem 3.15 of lectures does not hold if $p=\infty$, i.e. there is $f \in L^{\infty}(-\pi, \pi)$ such that $\left\|f-\sigma_{N} f\right\|_{L^{\infty}(-\pi, \pi)} \nrightarrow 0$ as $N \rightarrow \infty$.
3. (i) Assume that $f \in L^{1}(-\pi, \pi)$ is odd i.e. $f(-x)=-f(x)$. Show that then the Fourier series of f is a pure sine series, i.e. can be expressed in terms of functions $\sin (n x), n \in \mathbf{Z}$.
(ii) Conversely, if the Fourier series of $f \in L^{1}(-\pi, \pi)$ can be written as a sine series, deduce that $f(-x)=-f(x)$ almost surely for all $x \in(-\pi, \pi)$.
4. Define $f:[-\pi, \pi) \rightarrow \mathbf{R}$ by setting $f(x)=\cos (x / 2)$. Compute the Fourier series of f. Does the Fourier series of f converge at every point ? Does it converge at zero? If so, what identity do you get by substituting $x=0$?
5. Define $f(x)=0$ for $x \in[-\pi, 0], f(x)=\pi-x$ for $x \in[0, \pi)$, and extend f to 2π-perodic function. Compute the Fourier series of f. In which points does the Fourier series of the function $f(x)$ converge and to what value?
6. Let $\left(K_{n}\right)_{n \geq 1}$ be a good sequence of kernels on the interval $(-\pi, \pi)$ (especially, the functions K_{n} are 2π-periodic). Prove in detail Theorem 3.10 in case $p=1$, or in other words, that for every $g \in L^{1}(-\pi, \pi)$ it holds that

$$
\lim _{n \rightarrow \infty}\left\|g-K_{n} * g\right\|_{L^{1}(-\pi, \pi)}=0
$$

$\mathbf{7}^{* 1}$ Use the results of lectures so far to prove rigorously that every function $f:[0, \pi] \rightarrow \mathbf{C}$ that is Hölder-continuous (i.e. $|f(x)-f(y)| \leq C|x-y|^{\alpha}$ for some $\left.\alpha \in(0,1]\right)$ and satisfies $f(0)=f(\pi)=0$ can at each point $x \in[0, \pi]$ be expressed as a convergent sine series

$$
f(x)=\sum_{k=1}^{\infty} c_{k} \sin (k x) .
$$

Find an expression for the coefficients of c_{k}.

[^0]Hints for some of the exercises:
T.4(ii): [Write $\cos (x / 2)$ with the aid of Euler's formula.]
T.6: [Follow the idea of the proof of Theorem 3.10 - in case $p=1$ you can avoid completely the use of Hölder's inequality.]

[^0]: ${ }^{1}$ These $*$-exercises are extras for afficinadoes, not required to get full points from exercises

