FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 1

Exercise 1. Compute the Fourier coefficients of the function $f(x)=\pi-|x|$, for $|x| \leq \pi$.
Solution 1. First of all,

$$
\widehat{f}(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(\pi-|x|) d x=\pi-\frac{2}{2 \pi} \int_{0}^{\pi} x d x=\pi / 2 .
$$

Let us now compute $\widehat{f}(n)$ for $n \neq 0$.

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n x}(\pi-|x|) d x \\
& =-\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n x}|x| d x \\
& =-\frac{1}{2 \pi} \int_{0}^{\pi}\left(e^{-i n x}+e^{i n x}\right) x d x \\
& =-\frac{1}{\pi} \int_{0}^{\pi} \cos (n x) x d x
\end{aligned}
$$

The above integral can be computed by standard integration by parts. The antiderivative is
$\int x \cos (n x) d x=x \frac{\sin (n x)}{n}-\int \frac{\sin (n x)}{n} d x=x \frac{\sin (n x)}{n}-\frac{-\cos (n x)}{n^{2}}=x \frac{\sin (n x)}{n}+\frac{\cos (n x)}{n^{2}}$
Thus

$$
-\frac{1}{\pi} \int_{0}^{\pi} \cos (n x) x d x=\frac{1}{\pi} \frac{-\pi n \sin (\pi n)+1-\cos (\pi n)}{n^{2}}
$$

For integer $n \neq 0$, we have

$$
\frac{1}{\pi} \frac{-\pi n \sin (\pi n)+1-\cos (\pi n)}{n^{2}}=\frac{1-\cos (\pi n)}{\pi n^{2}}= \begin{cases}0, & \text { if } n \text { is even } \\ \frac{2}{\pi n^{2}}, & \text { if } n \text { is odd }\end{cases}
$$

So we have

$$
\widehat{f}(n)= \begin{cases}\frac{\pi}{2}, & \text { if } n=0 \\ 0, & \text { if } n \neq 0 \text { is even } \\ \frac{2}{\pi n^{2}}, & \text { if } n \text { is odd }\end{cases}
$$

Exercise 2. Compute the Fourier coefficients of the function $f(x)=e^{x}, x \in[-\pi, \pi]$.

Solution 2. From the definition of the Fourier coefficients we can compute

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{x-i n x} d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{(1-i n) x} d x \\
& =\frac{1}{2 \pi} \frac{1}{1-i n}\left(e^{(1-i n) \pi}-e^{-(1-i n) \pi}\right) \\
& =\frac{1}{2 \pi} \frac{1}{1-i n}\left(e^{\pi} e^{-i n \pi}-e^{-\pi} e^{i n \pi}\right) \\
& =\frac{(-1)^{n}\left(e^{\pi}-e^{-\pi}\right)}{2 \pi(1-i n)} \\
& =\frac{(-1)^{n} \sinh (\pi)}{\pi(1-i n)}
\end{aligned}
$$

Exercise 3. Assume that $f \in L^{1}(-\pi, \pi)$ is even, i.e. $f(-x)=f(x)$. Show that then the Fourier series of f is a pure cosine series, i.e. can be expressed in terms of functions $\cos (n x), n \in \mathbb{Z}$.

Solution 3. Suppose f is even. We use a substitution $t=-x$ compute that

$$
\widehat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n x} f(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i n t} f(-t) d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i(-n t)} f(t) d t=\widehat{f}(-n) .
$$

Let us now show that the Fourier series of f consists only of cosine functions. As

$$
\cos (x)=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)
$$

we may represent the Fourier series as

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} \widehat{f}(n) e^{i n x} & =\widehat{f}(0)+\sum_{n=1}^{\infty}\left(\widehat{f}(n) e^{i n x}+\widehat{f}(-n) e^{-i n x}\right) \\
& =\widehat{f}(0)+\sum_{n=1}^{\infty} \widehat{f}(n)\left(e^{i n x}+e^{-i n x}\right) \\
& =\widehat{f}(0)+\sum_{n=1}^{\infty} 2 \widehat{f}(n) \cos (n x)
\end{aligned}
$$

Exercise 4. How do you express the Fourier coefficients $\widehat{g}(n)$ assuming that you know those of f when f is 2π-periodic and
(i) $g(x)=f\left(x_{0}+x\right)$?
(ii) $g(x)=f(2 x)$, for $x \in[-\pi, \pi]$?

Solution 4. (i) Using subtitution $y=x+x_{0}$ shows that

$$
\begin{aligned}
\widehat{g}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(x) e^{-i n x} d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(x+x_{0}\right) e^{-i n x} d x \\
& =\frac{1}{2 \pi} \int_{-\pi+x_{0}}^{\pi+x_{0}} f(y) e^{-i n\left(y-x_{0}\right)} d y \\
& =e^{i n x_{0}} \frac{1}{2 \pi} \int_{-\pi+x_{0}}^{\pi+x_{0}} f(y) e^{-i n y} d y
\end{aligned}
$$

Now, the function $y \rightarrow f(y) e^{-i n y}$ is 2π-periodic, so its integral over any interval of length 2π does not depend on the endpoints of the interval. Thus

$$
\begin{aligned}
\widehat{g}(n) & =e^{i n x_{0}} \frac{1}{2 \pi} \int_{-\pi+x_{0}}^{\pi+x_{0}} f(y) e^{-i n y} d y \\
& =e^{i n x_{0}} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) e^{-i n y} d y \\
& =e^{i n x_{0}} \widehat{f}(n)
\end{aligned}
$$

(ii) We will prove that

$$
\widehat{g}(n)= \begin{cases}\widehat{f}(n / 2), & \text { if } n \text { is even } \\ 0, & \text { if } n \text { is odd }\end{cases}
$$

We make a substitution $y=2 x$ and obtain

$$
\begin{aligned}
\widehat{g}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(2 x) e^{-i n x} d x=\frac{1}{4 \pi} \int_{-2 \pi}^{2 \pi} f(y) e^{-i(n / 2) y} d y \\
& =\frac{1}{4 \pi}\left(\int_{-2 \pi}^{0} f(y) e^{-i(n / 2) y} d y+\int_{0}^{2 \pi} f(y) e^{-i(n / 2) y}\right) \\
& =\frac{1}{4 \pi} \int_{0}^{2 \pi} f(y) e^{-i(n / 2) y} d y\left(e^{-i n \pi}+1\right)
\end{aligned}
$$

Now if n is even, then we find that

$$
\frac{1}{4 \pi} \int_{0}^{2 \pi} f(y) e^{-i(n / 2) y} d y\left(e^{-i n \pi}+1\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(y) e^{-i(n / 2) y} d y=\widehat{f}(n / 2)
$$

For odd n, we get

$$
\frac{1}{4 \pi} \int_{0}^{2 \pi} f(y) e^{-i(n / 2) y} d y\left(e^{-i n \pi}+1\right)=\frac{1}{4 \pi} \int_{0}^{2 \pi} f(y) e^{-i(n / 2) y} d y \cdot 0=0
$$

Remark. We have in fact a more general result: if k is a positive integer and $g(x)=f(k x)$, then

$$
\widehat{g}(n)= \begin{cases}\widehat{f}(n / k), & \text { if } k \text { divides } n \\ 0, & \text { if } k \text { does not divide } n\end{cases}
$$

The essential observation when proving this is that $\sum_{j=0}^{p-1} e^{-i(j / p) \pi}=0$ for any integer $p \geq 2$, the details are left for an interested reader.

Exercise 5. Let $a \in L^{1}(-\pi, \pi)$ be an integrable function with $\int_{-\pi}^{\pi} a(x)=2 \pi$. Assume that $a(x)=0$ for $|x| \geq \pi$. Show that the (2π-periodifications) of the functions

$$
k_{n}(x)=n a(n x) \quad \text { for } \quad x \in[-\pi, \pi], \quad n \in \mathbb{Z}^{+}
$$

give a good sequence of kernels.
Solution 5. We simply verify that all three conditions in Definition 3.4. are satisfied.
(3.4) For any n, we have

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} k_{n}(x) d x=1
$$

Let n be arbitrary. Making the change of variables $y=n x$ we get by using the fact $a(x)=0$ for $|x|>\pi$ that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} k_{n}(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} n a(n x) d x=\frac{1}{2 \pi} \int_{-n \pi}^{n \pi} a(y) d y=\frac{1}{2 \pi} \int_{-\pi}^{\pi} a(y) d y=1
$$

(3.5) For any n, we have for some constant C_{0}

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|k_{n}(x)\right| d x \leq C_{0}
$$

Fix n. Making again the change of variables $y=n x$ and using the fact that $a \in L^{1}(-\pi, \pi)$, we get

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|k_{n}(x)\right| d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|n a(n x)| d x=\frac{1}{2 \pi} \int_{-n \pi}^{n \pi}|a(y)| d y=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|a(y)| d y=\|a\|_{1} / 2 \pi
$$

(3.6) For any $\delta>0$, we have

$$
\lim _{n \rightarrow \infty} \int_{\delta \leq|x| \leq \pi}\left|k_{n}(x)\right| d x=0
$$

Fix $\delta>0$. Then for any $n>\pi / \delta$, we have

$$
\int_{\delta \leq|x| \leq \pi}\left|k_{n}(x)\right| d x=\int_{\delta \leq|x| \leq \pi}|n a(n x)| d x=\int_{\delta \leq|x| \leq \pi} 0 d x=0
$$

We have shown that $\left\{k_{n}\right\}_{n=1}^{\infty}$ is a good sequence of kernels.

Exercise 6. According to lectures the Fourier coefficients $\widehat{f}(n)$ of $C_{\#}^{k}$-functions f tend to zero at least at the rate n^{-k} kun $|n| \geq 1$. Prove a partial converse to this result: : show that if $f \in C_{\#}(-\pi, \pi)$ and for each $k \in \mathbb{N}$ there is a constant $C=C_{k}$ such that

$$
|\widehat{f}(n)| \leq C_{k}(1+|n|)^{-k} \quad \text { forevery } n \in \mathbb{Z}
$$

then it holds that $f \in C_{\#}^{\infty}:=\cap_{k \geq 1} C_{\#}^{k}(-\pi, \pi)$.
Solution 6. We will show that f is in C^{1} and deduce the rest by induction. First of all, just from the case $k=2$ we know that

$$
|\widehat{f}(n)| \leq C_{2}(1+|n|)^{-2}
$$

for some constant C_{2}. Thus the Fourier series of f converges absolutely, and hence by Theorem 2.8 the Fourier series converges uniformly to f on $[-\pi, \pi]$. We can hence write

$$
f(x)=\sum_{n=-\infty}^{\infty} \widehat{f}(n) e^{i n x}
$$

If we show that the series on the right hand side is continuously differentiable, then so is f. To do this we first define the function g by

$$
g(x)=\sum_{n=-\infty}^{\infty} i n \widehat{f}(n) e^{i n x}
$$

Note that the series defining g is well-defined and converges uniformly to g since

$$
|i n \widehat{f}(n)| \leq C_{3}|n|(1+|n|)^{-3} \leq C_{3}(1+|n|)^{-2}
$$

for another constant C_{3}. We want to justify saying that $f^{\prime}=g$. For this, recall a result from Analysis II which says that if f_{n} is a sequence of functions converging to f at the point x and the sequence f_{n}^{\prime} converges uniformly to another function g, then $f^{\prime}(x)=g(x)$. Applying this result to the partial sums

$$
f_{N}(x)=\sum_{n=-N}^{N} \widehat{f}(n) e^{i n x} \quad, \quad f_{N}^{\prime}(x)=\sum_{n=-N}^{N} i n \widehat{f}(n) e^{i n x}
$$

shows that $f^{\prime}(x)=g(x)$ for all x as wanted. Since g is a uniform limit of continuous functions, it is continuous. Thus f is in C^{1}. Moreover, for all k it holds that

$$
|\widehat{g}(n)|=|i n \widehat{f}(n)| \leq|n| C_{k+1}(1+|n|)^{-k+1} \leq C_{k+1}(1+|n|)^{-k} .
$$

Hence $g=f^{\prime}$ satisfies the same condition as the original function f. Thus by the same arguments as above g must also be in C^{1}, so f is in C^{2}. By induction we see that f has to be in C^{k} for all $k \geq 0$. We are done.

Exercise $\mathbf{7}^{*}$. During the lectures the result of Exercise 1 was used to prove that

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\frac{\pi^{2}}{8}
$$

Use this fact to prove the famous Euler formula

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{6}
$$

Solution 7^{*}. We define following three sequences:

$$
\begin{gathered}
s_{m}=\sum_{n=1}^{m} \frac{1}{n^{2}} \\
a_{m}=\sum_{n=1}^{m} \frac{1}{(2 n-1)^{2}} \\
b_{m}=\sum_{n=1}^{m} \frac{1}{2^{2(n-1)}}
\end{gathered}
$$

We can determine by integral test that

$$
s_{m} \leq 1+\int_{1}^{m} \frac{1}{x^{2}} d x=2-\frac{1}{m} \leq 2
$$

so the sequence s_{m} is increasing and bounded; in particular, the limit $S=\lim _{m \rightarrow \infty} s_{m}$ exists. Next we show that

$$
s_{m} \leq a_{m} b_{m} \leq S
$$

We use the fact that we can write any positive integer n as $n=2^{k} r$ for some non-negative integer k and odd integer r. If we multiply open the expression $a_{m} b_{m}$, we see that

$$
a_{m} b_{m}=\sum_{n=2^{k} r, k<m, r \leq 2 m-1} \frac{1}{n^{2}}
$$

As all the integers n we some over are distinct, we immediately get that

$$
a_{m} b_{m} \leq S
$$

For the other inequality, we observe that for any $2^{k} r \leq m$ we have $r \leq m \leq 2 m-1$, and $2^{k} \leq m$ so $k<m$. This gives

$$
a_{m} b_{m} \geq s_{m}
$$

Now we see that

$$
S=\lim _{m \rightarrow \infty} s_{m} \leq \lim _{m \rightarrow \infty} a_{m} b_{m} \leq S
$$

But we already know that

$$
\lim _{m \rightarrow \infty} a_{m}=\frac{\pi^{2}}{8}
$$

We can also find by the geometric series formula that

$$
\lim _{m \rightarrow \infty} b_{m}=\frac{1}{1-\frac{1}{4}}=\frac{4}{3}
$$

Combining this, we see that

$$
S=\lim _{m \rightarrow \infty} a_{m} b_{m}=\frac{\pi^{2}}{8} \cdot \frac{4}{3}=\frac{\pi^{2}}{6}
$$

