FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 1

Exercise 1. Compute the Fourier coefficients of the function f(z) =7 — |z|, for |z| < 7.

Solution 1. First of all,
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Let us now compute f(n) for n # 0.
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The above integral can be computed by standard integration by parts. The antiderivative
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/a:cos(nx) dp — msin(n:c) _/ sin(nx) dp — xsin(nx) - cosz(na:) _ xsin(naz) N cos(;m:)
n n n n n n
Thus
1 /71' cos(na)e di — 1 —mnsin(mn) —12— 1 — cos(mn)
T Jo T n
For integer n # 0, we have
1 —mnsin(mn) + 1 —cos(mn) 1 —cos(mn) )0, if n is even
T n? N ™n? B -2, ifnis odd
So we have
R ifn=20
f(n) =10, if n # 0 is even
-2, ifnis odd
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Exercise 2. Compute the Fourier coefficients of the function f(z) = e*, x € [—m, 7).



Solution 2. From the definition of the Fourier coefficients we can compute
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Exercise 3. Assume that f € L'(—m,m) is even, i.e. f(—x) = f(x). Show that then the
Fourier series of f is a pure cosine series, i.e. can be expressed in terms of functions
cos(nx), n € Z.

Solution 3. Suppose f is even. We use a substitution ¢t = —x compute that
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fin) =5 [ e sade = o [ e e~ f(t)dt = Fl—n).
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Let us now show that the Fourier series of f consists only of cosine functions. As
cos(x) = L (e +e7™)
2
we may represent the Fourier series as
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= f(0) + Z fn) (e + =)

ZQf cos(nx)

Exercise 4. How do you express the Fourier coefficients g(n) assuming that you know those
of f when f is 2m-periodic and

(i) g(x) = flzo+2)?
(i) g(x)= f(2x), for z € [-m, 7| ?



Solution 4. (i) Using subtitution y = = + z( shows that
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Now, the function y — f(y)e™™ is 2n-periodic, so its integral over any interval of length
27 does not depend on the endpoints of the interval. Thus
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(ii) We will prove that

g

(n) = f(n/Z), if n is even
o, if n is odd

We make a substitution y = 2x and obtain
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Now if n is even, then we find that
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For odd n, we get
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Remark. We have in fact a more general result: if & is a positive integer and g(z) = f(kx),

then N
~ f(n/k), if k divides n
g(n) = . -
0, if k£ does not divide n

The essential observation when proving this is that Z?;é e~'U/P™ = ( for any integer
p > 2, the details are left for an interested reader.

Exercise 5. Let a € L'(—m,7) be an integrable function with [” a(z) = 27. Assume that
a(z) = 0 for |z| > 7. Show that the (27-periodifications) of the functions

kn(z) = na(nz) for z€[-m,7], neZ"
give a good sequence of kernels.

Solution 5. We simply verify that all three conditions in Definition 3.4. are satisfied.

(3.4) For any n, we have
1 s
— kn(z)dr =1
o (x) dx
Let n be arbitrary. Making the change of variables y = nx we get by using the fact
a(x) =0 for |z| > 7 that
Py ky(z)dx = Py na(nx) dr = Dy

(3.5) For any n, we have for some constant Cj
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% - ‘kn<.’lﬁ)’ dz S C[)

Fix n. Making again the change of variables y = nx and using the fact that a € L'(—m, ),
we get

[ ta)lde = o [ natna)lde =5 [l dn =5 [ laldy = lalh/27

(3.6) For any ¢ > 0, we have

lim |k (z)|dz =0

Fix § > 0. Then for any n > 7/J, we have

/ |k:n(x)|dx:/ |na(nm)|dx:/ 0de =0
0<|z|<m 0<|z|<m o<|z|<m

We have shown that {k,}>°, is a good sequence of kernels.
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Exercise 6. According to lectures the Fourier coeflicients f(n) of C’;i-functions f tend to zero
at least at the rate n=* kun |n| > 1. Prove a partial converse to this result: : show that if
f € Cyu(—m,m) and for each k € N there is a constant C' = Cj, such that

1F(n)| < Cu(1 + In))*  forevery n € Z,
then it holds thatf € C° := M1 Ch(—m, 7).
Solution 6. We will show that f is in C! and deduce the rest by induction. First of all, just
from the case k = 2 we know that
[f ()] < Co(1 + )2

for some constant C5. Thus the Fourier series of f converges absolutely, and hence by
Theorem 2.8 the Fourier series converges uniformly to f on [—m, w]. We can hence write

fl@)="3" Flnyer.

n=—oo

If we show that the series on the right hand side is continuously differentiable, then so is
f. To do this we first define the function g by
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g(w) = 3 infln)en.

n=—oo

Note that the series defining ¢ is well-defined and converges uniformly to ¢ since
[inf (n)] < Chln|(1+ [n|)™ < Cy(1 + [n[) >

for another constant C3. We want to justify saying that f’ = g. For this, recall a result
from Analysis IT which says that if f,, is a sequence of functions converging to f at the
point z and the sequence f/ converges uniformly to another function g, then f'(z) = g(x).
Applying this result to the partial sums

N

fn@ = 3 e, fil@= 3 infn)e

n=—N

shows that f'(x) = g(x) for all x as wanted. Since g is a uniform limit of continuous
functions, it is continuous. Thus f is in C'. Moreover, for all k it holds that

()] = linf (n)] < [p|Cir (14 |n]) ™ < Chpa (14 n]) ™,

Hence g = f’ satisfies the same condition as the original function f. Thus by the same
arguments as above ¢ must also be in C*, so f is in C?. By induction we see that f has
to be in C* for all k > 0. We are done.



Exercise 7*. During the lectures the result of Exercise 1 was used to prove that
2k —1)2 8"
k=1

Use this fact to prove the famous Euler formula

i1—1+1+1+1+ o
n? 22 032 42 T 67

n=1

Solution 7*. We define following three sequences:
-1
2
= G 1 1 2

n=1

Ms

22(n 1)

We can determine by integral test that

m 1 1
m<1l+ [ Sdr=2-—<2
1 m

so the sequence s, is increasing and bounded; in particular, the limit S = lim,, o S
exists. Next we show that

We use the fact that we can write any positive integer n as n = 2¥r for some non-negative
integer k and odd integer r. If we multiply open the expression a,,b,,, we see that

1
Ambm = ) o)
n=2kr k<mr<2m-—1
As all the integers n we some over are distinct, we immediately get that
ambm < S

For the other inequality, we observe that for any 2Fr <'m we have r < m < 2m — 1, and
2% < m so k < m. This gives
Ambm > S

Now we see that
S = lim s, < lim a,,b,, <S5

m—0o0 m—0o0
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lim a,, = —
m—00 8

But we already know that

We can also find by the geometric series formula that
1

lim b, = T
Combining this, we see that
2
s
S = lim a,,b, = —
m—00 8



