FOURIER ANALYSIS. (fall 2016)

1. EXERCISES (pe 23.09, 10-12 in room C322)

- **1.** Compute the Fourier coefficients of the function $f(x) = \pi |x|$, for $|x| \le \pi$.
- **2.** Compute the Fourier coefficients of the function $f(x) = e^x$, $x \in [-\pi, \pi]$.
- **3.** Assume that $f \in L^1(-\pi, \pi)$ is even, i.e. f(-x) = f(x). Show that then the Fourier series of f is a pure cosine series, i.e. can be expressed in terms of functions $\cos(nx)$, $n \in \mathbb{Z}$.
- 4. How do you express the Fourier coefficients $\hat{g}(n)$ assuming that you know those of f when f is 2π -periodic and
 - (i) $g(x) = f(x_0 + x)$?

(ii)
$$g(x) = f(2x)$$
 for $x \in [-\pi, \pi]$?

5. Let $a \in L^1(-\pi, \pi)$ be an integrable function with $\int_{-\pi}^{\pi} a(x) = 2\pi$. Assume that a(x) = 0 for $|x| \ge \pi$. Show that the $(2\pi$ -periodifications) of the functions

$$k_n(x) = na(nx)$$
 for $x \in [-\pi, \pi], n \in \mathbf{Z}^+$

give a good sequence of kernels.

6. According to lectures the Fourier coefficients $\widehat{f}(n)$ of $C^k_{\#}$ -functions f tend to zero at least at the rate n^{-k} kun $|n| \ge 1$. Prove a partial converse to this result: : show that if $f \in C_{\#}(-\pi,\pi)$ and for each $k \in \mathbb{N}$ there is a constant $C = C_k$ such that

$$|\widehat{f}(n)| \leq C_k (1+|n|)^{-k}$$
 forevery $n \in \mathbf{Z}$,

then it holds that $f \in C^{\infty}_{\#} := \cap_{k \ge 1} C^k_{\#}(-\pi, \pi).$

 7^{*1} During the lectures the result of Exercise 1 was used to prove that

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{\pi^2}{8}.$$

Use this fact to prove the famous Euler formula

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}.$$

¹These *-exercises are extras for afficinadoes, not required to get full points from exercises

Hints for some of the exercises:

T.4(ii): [Guess the answer by writing formally f as its Fourier series and substitute x = 2x] **T.6:** [Use results from the analysis courses to verify that in this situation you may differentiate the]

T.7: [Note first what happens to the first series if you multiply it by 2^{-2k} : you get sum of reciprocals of squares of certain numbers.]