FOURIER ANALYSIS. (fall 2016)

1. EXERCISES (pe 23.09, 10-12 in room C322)

1. Compute the Fourier coefficients of the function $f(x)=\pi-|x|$, for $|x| \leq \pi$.
2. Compute the Fourier coefficients of the function $f(x)=e^{x}, x \in[-\pi, \pi]$.
3. Assume that $f \in L^{1}(-\pi, \pi)$ is even, i.e. $f(-x)=f(x)$. Show that then the Fourier series of f is a pure cosine series, i.e. can be expressed in terms of functions $\cos (n x), n \in \mathbf{Z}$.
4. How do you express the Fourier coefficients $\widehat{g}(n)$ assuming that you know those of f when f is 2π-periodic and
(i) $g(x)=f\left(x_{0}+x\right)$?
(ii) $g(x)=f(2 x)$ for $x \in[-\pi, \pi]$?
5. Let $a \in L^{1}(-\pi, \pi)$ be an integrable function with $\int_{-\pi}^{\pi} a(x)=2 \pi$. Assume that $a(x)=0$ for $|x| \geq \pi$. Show that the (2π-periodifications) of the functions

$$
k_{n}(x)=n a(n x) \quad \text { for } \quad x \in[-\pi, \pi], \quad n \in \mathbf{Z}^{+}
$$

give a good sequence of kernels.
6. According to lectures the Fourier coefficients $\widehat{f}(n)$ of $C_{\#}^{k}$-functions f tend to zero at least at the rate n^{-k} kun $|n| \geq 1$. Prove a partial converse to this result: : show that if $f \in C_{\#}(-\pi, \pi)$ and for each $k \in \mathbf{N}$ there is a constant $C=C_{k}$ such that

$$
|\widehat{f}(n)| \leq C_{k}(1+|n|)^{-k} \quad \text { forevery } n \in \mathbf{Z}
$$

then it holds that $f \in C_{\#}^{\infty}:=\cap_{k \geq 1} C_{\#}^{k}(-\pi, \pi)$.
$7^{* 1}$ During the lectures the result of Exercise 1 was used to prove that

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\frac{\pi^{2}}{8}
$$

Use this fact to prove the famous Euler formula

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{6}
$$

[^0]Hints for some of the exercises:
T.4(ii): [Guess the answer by writing formally f as its Fourier series and substitute $x=2 x$] T.6: [Use results from the analysis courses to verify that in this situation you may differentiate the
T.7: [Note first what happens to the first series if you multiply it by $2^{-2 k}$: you get sum of reciprocals of squares of certain numbers.]

[^0]: ${ }^{1}$ These $*$-exercises are extras for afficinadoes, not required to get full points from exercises

