Finite Model Theory: Lecture 1

Jonni Virtema

University of Helsinki, Finland jonni.virtema@gmail.com

19th of September, 2016

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

Relations

- ▶ 1-ary relations over X are just subsets of X.
- ▶ 2-ary relations over X are sets of pairs (x, y) s.t $x, y \in X$.
- ▶ 3-ary relations over X are sets of triplets (x, y, z) s.t $x, y, z \in X$.

etc.

Definition (n-ary relation)

Let X be a set and $n\in\mathbb{Z}_+$ a positive natural number. An *n-ary relation over* X is a subset of the *n*-fold cartesian product

 $X^n = \{(x_0, \ldots, x_{n-1}) \mid x_0, \ldots, x_{n-1} \in X\}.$

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

Relations

- ▶ 1-ary relations over X are just subsets of X.
- ▶ 2-ary relations over X are sets of pairs (x, y) s.t $x, y \in X$.
- ▶ 3-ary relations over X are sets of triplets (x, y, z) s.t $x, y, z \in X$.

etc.

Definition (n-ary relation)

Let X be a set and $n \in \mathbb{Z}_+$ a positive natural number. An *n*-ary relation over X is a subset of the *n*-fold cartesian product

$$X^n = \{(x_0, \ldots, x_{n-1}) \mid x_0, \ldots, x_{n-1} \in X\}.$$

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

- Already powerful and versitile
- ► Examples: Edge relation *E* in graphs, set inclusion ∈ in set theory, order relation ≤, etc.
- > Many interesting properties: reflexive, symmetric, transitive, etc
- Unary function $f : X \to X$ is in fact a binary relation $\{(x, f(x)) | x \in X\}$.

Finite Model Theory: Lecture 1

Jonni Virte<u>ma</u>

Relations and functions

- Already powerful and versitile
- ► Examples: Edge relation *E* in graphs, set inclusion ∈ in set theory, order relation ≤, etc.
- > Many interesting properties: reflexive, symmetric, transitive, etc
- Unary function $f: X \to X$ is in fact a binary relation $\{(x, f(x)) | x \in X\}$.

Jonni Virtema

Relations and functions

Functions

- ▶ 1-ary functions over X map elements of X to elements of X, f(a) = b.
- 2-ary functions over X map pairs of elements of X to elements of X,
 g(a, b) = c.

Definition (n-ary function)

Let X be a set and $n \in \mathbb{Z}_+$ a positive natural number. An *n*-ary function f over X is a mapping $f : X^n \to X$.

Often functions are identified with their graphs. That is, an *n*-ary function $f: X^n \to X$ as an n + 1-ary relation:

 $\{(x_0,\ldots,x_{n-1},f(x_0,\ldots,x_{n-1})) \mid x_0,\ldots,x_{n-1} \in X\}$

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

Functions

- ▶ 1-ary functions over X map elements of X to elements of X, f(a) = b.
- ► 2-ary functions over X map pairs of elements of X to elements of X, g(a, b) = c.

Definition (n-ary function)

Let X be a set and $n \in \mathbb{Z}_+$ a positive natural number. An *n*-ary function f over X is a mapping $f : X^n \to X$.

Often functions are identified with their graphs. That is, an *n*-ary function $f: X^n \to X$ as an n + 1-ary relation:

 $\{(x_0,\ldots,x_{n-1},f(x_0,\ldots,x_{n-1})) \mid x_0,\ldots,x_{n-1} \in X\}$

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

Functions

- ▶ 1-ary functions over X map elements of X to elements of X, f(a) = b.
- ► 2-ary functions over X map pairs of elements of X to elements of X, g(a, b) = c.

Definition (n-ary function)

Let X be a set and $n \in \mathbb{Z}_+$ a positive natural number. An *n*-ary function f over X is a mapping $f : X^n \to X$.

Often functions are identified with their graphs. That is, an *n*-ary function $f: X^n \to X$ as an n + 1-ary relation:

 $\{(x_0,\ldots,x_{n-1},f(x_0,\ldots,x_{n-1})) \mid x_0,\ldots,x_{n-1} \in X\}$

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

• By dom(f) and rg(f) we denote the domain and the range on a function f.

Finite Model

Theory: Lecture 1 Jonni Virtema Relations and functions Models

- $f : A \to B$ means that $A = \operatorname{dom}(f)$ and $\operatorname{rg}(f) \subseteq B$.
- Properties of functions: injection, surjection, bijection.
- Example: + is a binary function on \mathbb{N} , +(a, b) = a + b, +(2, 3) = 5.

Symbols and vocabularies

Symbols:

- ▶ Relation symbols: R, S, R_1, R_2 etc. Relation symbol has an arity $ar(R) \in \mathbb{Z}_+$.
- Function symbols: f, g, f_1, f_2 etc. Function symbol has an arity $ar(f) \in \mathbb{Z}_+$.
- Constant symbols: c, d, c_1, c_2 etc. Constant symbol has an arity ar(c) = 0.
- Symbols do not have any structure. Only type (relation/function/constant) and arity.
- Vocabulary is a set of symbols.
 - We use $\tau, \sigma, \tau_1, \tau_2$ etc. to denote vocabularies.
 - $Con(\tau)$ denotes the set of constant symbols in τ .
 - $\operatorname{Rel}(\tau)$ denotes the set of relation symbols in τ .
 - $\operatorname{Fun}(\tau)$ denotes the set of function symbols in τ .

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

Symbols and vocabularies

Symbols:

- ▶ Relation symbols: R, S, R_1, R_2 etc. Relation symbol has an arity $ar(R) \in \mathbb{Z}_+$.
- ▶ Function symbols: f, g, f_1, f_2 etc. Function symbol has an arity $ar(f) \in \mathbb{Z}_+$.
- Constant symbols: c, d, c_1, c_2 etc. Constant symbol has an arity ar(c) = 0.
- Symbols do not have any structure. Only type (relation/function/constant) and arity.
- Vocabulary is a set of symbols.
 - We use $\tau, \sigma, \tau_1, \tau_2$ etc. to denote vocabularies.
 - $Con(\tau)$ denotes the set of constant symbols in τ .
 - $\operatorname{Rel}(\tau)$ denotes the set of relation symbols in τ .
 - $\operatorname{Fun}(\tau)$ denotes the set of function symbols in τ .

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

Symbols and vocabularies

Symbols:

- ▶ Relation symbols: R, S, R_1, R_2 etc. Relation symbol has an arity $ar(R) \in \mathbb{Z}_+$.
- ▶ Function symbols: f, g, f_1, f_2 etc. Function symbol has an arity $ar(f) \in \mathbb{Z}_+$.
- Constant symbols: c, d, c_1, c_2 etc. Constant symbol has an arity ar(c) = 0.
- Symbols do not have any structure. Only type (relation/function/constant) and arity.
- Vocabulary is a set of symbols.
 - We use $\tau, \sigma, \tau_1, \tau_2$ etc. to denote vocabularies.
 - $Con(\tau)$ denotes the set of constant symbols in τ .
 - $\operatorname{Rel}(\tau)$ denotes the set of relation symbols in τ .
 - $Fun(\tau)$ denotes the set of function symbols in τ .

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

Let τ be a vocabulary. A pair $\mathfrak{A} = (A, T)$ is called a τ -model, it the following conditions hold:

- 1. $A \neq \emptyset$; the set A is called as the *universe* or *domain* of \mathfrak{A} . We denote $Dom(\mathfrak{A}) = A$.
- 2. *T* is a function with domain dom(*T*) = τ . *T* maps every symbols $X \in \tau$ to its *interpretation T*(*X*) in \mathfrak{A} (denoted also by $X^{\mathfrak{A}}$).
- 3. For each $c \in \operatorname{Con}(\tau)$ the intepretation $c^{\mathfrak{A}} \in \operatorname{Dom}(\mathfrak{A})$.
- For each R ∈ Rel(τ) the intepretation R^𝔅 is an *n*-ary relation over Dom(𝔅), where n = ar(R).
- 5. For each $f \in \operatorname{Fun}(\tau)$ the intepretation $f^{\mathfrak{A}}$ is an *n*-ary function over $\operatorname{Dom}(\mathfrak{A})$, where $n = \operatorname{ar}(f)$.

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

Let τ be a vocabulary. A pair $\mathfrak{A} = (A, T)$ is called a τ -model, it the following conditions hold:

- A ≠ Ø; the set A is called as the *universe* or *domain* of 𝔅. We denote Dom(𝔅) = A.
- 2. *T* is a function with domain dom(*T*) = τ . *T* maps every symbols $X \in \tau$ to its *interpretation T*(*X*) in \mathfrak{A} (denoted also by $X^{\mathfrak{A}}$).
- 3. For each $c \in \operatorname{Con}(\tau)$ the intepretation $c^{\mathfrak{A}} \in \operatorname{Dom}(\mathfrak{A})$.
- For each R ∈ Rel(τ) the intepretation R^𝔅 is an *n*-ary relation over Dom(𝔅), where n = ar(R).
- 5. For each $f \in \operatorname{Fun}(\tau)$ the intepretation $f^{\mathfrak{A}}$ is an *n*-ary function over $\operatorname{Dom}(\mathfrak{A})$, where $n = \operatorname{ar}(f)$.

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

Let τ be a vocabulary. A pair $\mathfrak{A} = (A, T)$ is called a τ -model, it the following conditions hold:

- A ≠ Ø; the set A is called as the *universe* or *domain* of 𝔅. We denote Dom(𝔅) = A.
- 2. *T* is a function with domain dom(*T*) = τ . *T* maps every symbols $X \in \tau$ to its *interpretation T*(*X*) in \mathfrak{A} (denoted also by $X^{\mathfrak{A}}$).
- 3. For each $c \in \operatorname{Con}(\tau)$ the intepretation $c^{\mathfrak{A}} \in \operatorname{Dom}(\mathfrak{A})$.
- For each R ∈ Rel(τ) the intepretation R^A is an *n*-ary relation over Dom(𝔅), where n = ar(R).
- 5. For each $f \in \operatorname{Fun}(\tau)$ the intepretation $f^{\mathfrak{A}}$ is an *n*-ary function over $\operatorname{Dom}(\mathfrak{A})$, where $n = \operatorname{ar}(f)$.

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

Let τ be a vocabulary. A pair $\mathfrak{A} = (A, T)$ is called a τ -model, it the following conditions hold:

- 1. $A \neq \emptyset$; the set A is called as the *universe* or *domain* of \mathfrak{A} . We denote $Dom(\mathfrak{A}) = A$.
- 2. *T* is a function with domain dom(*T*) = τ . *T* maps every symbols $X \in \tau$ to its *interpretation T*(*X*) in \mathfrak{A} (denoted also by $X^{\mathfrak{A}}$).
- 3. For each $c \in \operatorname{Con}(\tau)$ the intepretation $c^{\mathfrak{A}} \in \operatorname{Dom}(\mathfrak{A})$.
- For each R ∈ Rel(τ) the intepretation R^A is an *n*-ary relation over Dom(𝔅), where n = ar(R).
- 5. For each $f \in \operatorname{Fun}(\tau)$ the intepretation $f^{\mathfrak{A}}$ is an *n*-ary function over $\operatorname{Dom}(\mathfrak{A})$, where $n = \operatorname{ar}(f)$.

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

Let τ be a vocabulary. A pair $\mathfrak{A} = (A, T)$ is called a τ -model, it the following conditions hold:

- A ≠ Ø; the set A is called as the *universe* or *domain* of 𝔅. We denote Dom(𝔅) = A.
- 2. *T* is a function with domain dom(*T*) = τ . *T* maps every symbols $X \in \tau$ to its *interpretation T*(*X*) in \mathfrak{A} (denoted also by $X^{\mathfrak{A}}$).
- 3. For each $c \in \operatorname{Con}(\tau)$ the intepretation $c^{\mathfrak{A}} \in \operatorname{Dom}(\mathfrak{A})$.
- For each R ∈ Rel(τ) the intepretation R^A is an *n*-ary relation over Dom(𝔄), where n = ar(R).
- 5. For each $f \in \operatorname{Fun}(\tau)$ the intepretation $f^{\mathfrak{A}}$ is an *n*-ary function over $\operatorname{Dom}(\mathfrak{A})$, where $n = \operatorname{ar}(f)$.

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

Let τ be a vocabulary. A pair $\mathfrak{A} = (A, T)$ is called a τ -model, it the following conditions hold:

- A ≠ Ø; the set A is called as the *universe* or *domain* of 𝔅. We denote Dom(𝔅) = A.
- 2. *T* is a function with domain dom(*T*) = τ . *T* maps every symbols $X \in \tau$ to its *interpretation T*(*X*) in \mathfrak{A} (denoted also by $X^{\mathfrak{A}}$).
- 3. For each $c \in \operatorname{Con}(\tau)$ the intepretation $c^{\mathfrak{A}} \in \operatorname{Dom}(\mathfrak{A})$.
- For each R ∈ Rel(τ) the intepretation R^A is an *n*-ary relation over Dom(𝔅), where n = ar(R).
- 5. For each $f \in \operatorname{Fun}(\tau)$ the intepretation $f^{\mathfrak{A}}$ is an *n*-ary function over $\operatorname{Dom}(\mathfrak{A})$, where $n = \operatorname{ar}(f)$.

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

Model

When $\tau = \{f, g, c, d, R\}$ is a finite vocabulary, we often write

 $\mathfrak{A} = (A, f^{\mathfrak{A}}, g^{\mathfrak{A}}, c^{\mathfrak{A}}, d^{\mathfrak{A}}, R^{\mathfrak{A}})$

instead of (A, T). When extremely lazy we write simply

 $\mathfrak{A} = (A, f, g, c, d, R).$

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions

Model

When $\tau = \{f, g, c, d, R\}$ is a finite vocabulary, we often write

 $\mathfrak{A} = (A, f^{\mathfrak{A}}, g^{\mathfrak{A}}, c^{\mathfrak{A}}, d^{\mathfrak{A}}, R^{\mathfrak{A}})$

instead of (A, T). When extremely lazy we write simply

 $\mathfrak{A} = (A, f, g, c, d, R).$

Finite Model Theory: Lecture 1

Jonni Virtema

Relations and functions