Finite model theory Problems 8 Tuesday 8.11.2016

1. A bipartite graph \mathbb{G} is balanced if there is $U \subseteq \text{Dom}(\mathbb{G})$ such that $|U| = |\text{Dom}(\mathbb{G}) \setminus U|$ and all edges of \mathbb{G} are between elements of U and $\text{Dom}(\mathbb{G}) \setminus U$. Show that there is no sentence $\varphi \in \text{MSO}$ such that for all finite graphs \mathbb{G} :

 $\mathbb{G} \models \varphi \Leftrightarrow \mathbb{G}$ is balanced.

2. Construct a sentence $\varphi \in MSO$ such that for all finite graphs \mathbb{G} :

 $\mathbb{G} \models \varphi \Leftrightarrow \mathbb{G}$ is 3-colorable.

(The class of 3-colorable graphs in not known to in PTIME.)

3. Let $L \subseteq \Sigma^+$ be definable in MSO. Show that L is in PTIME.

4. Formulate (informally) an EF-game for MSO. Let $\tau = \{P_1, ..., P_l\}$, be a unary vocabulary, and let \mathfrak{A} and \mathfrak{B} be τ -models such that $\mathfrak{A} \equiv_{2^k} \mathfrak{B}$ (FO). Show using the EF-game that $\mathfrak{A} \equiv_k \mathfrak{B}$ (MSO).

5. Let τ be as in the previous exercise. Show that for every $\varphi \in MSO[\tau]$ there is $\varphi^* \in FO[\tau]$ such that for all finite τ -models \mathfrak{A} :

$$\mathfrak{A}\models\varphi\Leftrightarrow\mathfrak{A}\models\varphi^*.$$