Finite model theory Problems 7 Tuesday 1.11.2016

1. Let $k \geq 1$. Construct a sentence φ of second-order logic such that for all finite structures \mathfrak{A} :

$$\mathfrak{A} \models \varphi \Leftrightarrow |\mathrm{Dom}(\mathfrak{A})|$$
 is divisible by k.

2. Construct a sentence φ of monadic second-order logic such that for all finite ordered structures \mathfrak{A} :

$$\mathfrak{A} \models \varphi \Leftrightarrow |\mathrm{Dom}(\mathfrak{A})|$$
 is even.

3. A graph \mathbb{G} is bipartite if there is $U \subseteq \text{Dom}(\mathbb{G})$ such that all edges of \mathbb{G} are between elements of U and $\text{Dom}(\mathbb{G}) \setminus U$. Construct a sentence φ of monadic second-order logic such that for all finite graphs \mathbb{G} :

$$\mathbb{G} \models \varphi \Leftrightarrow \mathbb{G}$$
 is bipartite.

4. Let $L \subseteq \Sigma^*$ be recognized by a finite automaton. Show that there exists $m \in \mathbb{N}$ such that for all $s \in \Sigma^*$ with $|s| \ge m$, s can be written as uvw, where $u, v, w \in \Sigma^*, v \ne \lambda, |uv| \le m$, and for all $k \in \mathbb{N}$

$$uvw \in L \Leftrightarrow uv^k w \in L.$$

5. Let Σ have at least two letters. Show that the language L consisting of all palindromes w over Σ cannot be recognized by a finite automaton. Recall that a word $w = \alpha_0 \dots \alpha_n$ is a palindrome if $\alpha_i = \alpha_{n-i}$ for all i. 6. Let $\Sigma = \{a, b\}$, and $L = \{w \in \Sigma^+ \mid w \text{ has more occurrences of } a \text{ than } b\}$. Show that L cannot be recognized by a finite automaton.