Finite model theory

Problems 6
Tuesday 18.10.2016

1. Let $\Sigma=\{a, b, c\}$. Construct finite automata recognizing the following languages:
2. $L_{0}=\left\{w \in \Sigma^{+}| | w \mid=0 \bmod 4\right\}$
3. $L_{1}=\left\{w=\alpha_{0} \ldots \alpha_{j} \in \Sigma^{+} \mid \alpha_{i} \neq \alpha_{i+1}\right.$ for all $\left.0 \leq i \leq j-1\right\}$
4. $L_{2}=\left\{w \in \Sigma^{+} \mid w=a^{k} b^{l} c^{t}\right.$ for some $\left.k, l, t \geq 1\right\}$
5. Let $L \subseteq \Sigma^{*}$ be a finite language. Show that L can be recognized by a finite automaton.
6. Show that the languages L_{1} and L_{2} above can be defined in first-order logic.
7. Show that the language $L_{0} \backslash\{\lambda\}$ cannot be defined in first-order logic.
8. Let $\mathfrak{A}, \mathfrak{A}^{\prime}, \mathfrak{B}$, and \mathfrak{B}^{\prime} be finite ordered relational τ-models such that $\mathfrak{A} \cong_{k} \mathfrak{A}^{\prime}$ and $\mathfrak{B} \cong_{k} \mathfrak{B}^{\prime}$. Show that for the ordered sums the following holds:

$$
\mathfrak{A} \notin \mathfrak{B} \cong_{k} \mathfrak{A}^{\prime} \not \not \mathfrak{B}^{\prime} .
$$

6. Let $\Sigma=\{a, b\}$, and $L=\left\{w \in \Sigma^{+} \mid w\right.$ has more occurrences of a than $\left.b\right\}$. Show that L cannot be defined in first-order logic.
