Finite model theory Problems 10 Tuesday 22.11.2016

1. Show that existential second-order logic Σ_1^1 is closed under \vee and $\forall x$ in the following sense: if $\varphi, \psi \in \Sigma_1^1$, then there is $\theta \in \Sigma_1^1$ such that for all \mathfrak{A} :

$$\mathfrak{A}\models\varphi\lor\psi\Leftrightarrow\mathfrak{A}\models\theta$$

and

$$\mathfrak{A} \models \forall x \varphi \Leftrightarrow \mathfrak{A} \models \theta.$$

2. Let $\varphi \in FO[\tau]$, where $\tau = \tau_1 \cup \{<\}$ and τ_1 is finite. Sentence φ is orderinvariant if for all τ_1 -models \mathfrak{A} and all linear orderings <, <' of Dom (\mathfrak{A}) :

$$\langle \mathfrak{A}, < \rangle \models \varphi \Leftrightarrow \langle \mathfrak{A}, <' \rangle \models \varphi.$$

Show the following:

- i) Give an example of a first-order sentence φ which is not order-invariant.
- ii) Let $\tau_1 = \{U, V, E\}$, where U, V are unary and E is binary. Show that there is an order-invariant sentence $\varphi \in FO[\tau]$ that is not equivalent to any $\varphi \in FO[\tau_1]$. (Hint: consider models of the form \mathfrak{A}^{II} (see page 76 of the lecture notes), where V encodes $\mathcal{P}(U)$ and E encodes the set membership relation between elements of U and V. You may assume that in FO it is not possible to express that |U| is even.)

3.Let τ be a finite relational vocabulary, and K a class of finite τ models. Let $\langle \notin \tau$ and let K_{\leq} be the following class of $\tau \cup \{<\}$ models:

 $K_{\leq} = \{ \langle \mathfrak{A}, \langle \rangle \mid \mathfrak{A} \in K \text{ and } \langle is \text{ an ordering of } \text{Dom}(\mathfrak{A}) \}.$

Let \mathcal{L} be a logic and C a complexity class. We say that \mathcal{L} strongly captures C if for all τ and classes K of finite τ -models:

 $K_{\leq} \in C \Leftrightarrow K = \operatorname{Mod}(\varphi), \text{ for some } \varphi \in \mathcal{L}[\tau].$

Show that IFP does not strongly capture PTIME. 4.Show that Σ_1^1 strongly captures NPTIME.