Finite model theory Problems 3 Tuesday 27.9.2016

1. Show that for every $\mathcal{L}_{\infty,\omega}$ -sentence φ over a finite τ there is a $\mathcal{L}_{\omega_1,\omega}$ -sentence ψ such that for all finite τ -models \mathfrak{A}

$$\mathfrak{A}\models\varphi\Leftrightarrow\mathfrak{A}\models\psi.$$

2. Let τ be finite vocabulary, and \mathfrak{A} and \mathfrak{B} a finite τ -models. Show that the following are equivalent:

- 1. ${\mathfrak A}$ and ${\mathfrak B}$ satisfy the same sentences of ${\rm FO}^k,$
- 2. \mathfrak{A} and \mathfrak{B} satisfy the same sentences of $\mathcal{L}^{k}_{\infty,\omega}$.

Hint: Show that the claim of Exercise 1 holds for the logics $\mathcal{L}_{\infty,\omega}$ and FO when equivalence with respect to all finite models is replaced by equivalence with respect to \mathfrak{A} and \mathfrak{B} .

3. Let n > 0. Construct an FO²-formula $\psi_n(x)$ such that for any finite linear order \mathfrak{A} the following holds: $\mathfrak{A} \models \psi_n[a/x]$ iff a has exactly n predecessors with respect to $\leq^{\mathfrak{A}}$.

4. Let K be a class of finite ordered τ -models, where $\tau \ (\leq \in \tau)$ is a finite vocabulary consisting of relation symbols of arity at most 2. Show that K can be axiomatized by a sentence of $\mathcal{L}^2_{\infty,\omega}$.

5. Let \mathfrak{A} and \mathfrak{B} be finite linear orders such that $|Dom(\mathfrak{A})| \neq |Dom(\mathfrak{B})|$ and $|Dom(\mathfrak{A})| < 2^{k-1}$. Show that the spoiler has a winning strategy in $EF_k(\mathfrak{A}, \mathfrak{B})$. **6.** Determine the greatest k such that $\mathbb{G} \cong_k \mathbb{G}'$ holds.

