Finite model theory Problems 2 Tuesday 20.9.2016

1. Let τ be a finite vocabulary without function symbols. Determine the number of atomic τ -sentences.

2. Let \mathfrak{A} and \mathfrak{B} be τ -models, p a partial isomorphism from \mathfrak{A} to \mathfrak{B} , and $a_1, \ldots, a_k \in \operatorname{dom}(p)$. Show that

$$\mathfrak{A}\models\varphi[a_1/x_1,...,a_k/x_k]\Leftrightarrow\mathfrak{B}\models\varphi[p(a_1)/x_1,...,p(a_k)/x_k],$$

for all atomic $\tau \cup \{x_1, ..., x_k\}$ -sentences φ .

3. Let $\{E\}$ be a binary relation symbol. Construct a first-order sentence φ such that

 $\mathfrak{A} \models \varphi \Leftrightarrow E^{\mathfrak{A}}$ is an equivalence relation.

4. Let τ be a finite vocabulary without function symbols, and \mathfrak{A} a finite τ -model. Show that there exists a first-order sentence $\varphi_{\mathfrak{A}}$ such that for all \mathfrak{B} the following holds:

$$\mathfrak{B}\models\varphi_{\mathfrak{A}}\Leftrightarrow\mathfrak{B}\cong\mathfrak{A}.$$

5. Let f be a unary function symbol. Construct a $\{f\}$ -sentence φ such that the following holds for all \mathfrak{A} of vocabulary $\{f\}$:

$$\mathfrak{A} \models \varphi \Rightarrow \operatorname{Dom}(\mathfrak{A})$$
 is infinite.

6. Let \mathfrak{A}_n be a structure of vocabulary $\{+\}$ (binary function symbol) such that $\operatorname{Dom}(\mathfrak{A}_n) = \{0, ..., n-1\}$ and + is interpreted as addition modulo n. Give an example of a sentence φ such that $\mathfrak{A}_{13} \models \varphi$ but $\mathfrak{A}_{17} \not\models \varphi$.