Finite model theory Problems 11 Tuesday 29.11.2016

1. Let $\tau = \{<\}$ where < is an arbitrary binary relation symbol. Show that for all $n \ge 1$ there is a satisfiable $FO_{=}^{2}[\tau]$ -sentence having only models of cardinality $\ge n$. (Note that the class of orderings is not axiomatizable in $FO_{=}^{2}$.)

2. $\Sigma_1^1(FO_{=}^1)[\tau]$ is the fragment of $ESO[\tau]$ in which the first-order part is in $FO_{=}^1$ (i.e. of the form $\exists R_1 \ldots \exists R_n \phi$, where $\phi \in FO_{=}^1[\tau \cup \{R_1, \ldots, R_n\}]$). a) Show that $\Sigma_1^1(FO_{=}^1)$ has the finite model property. b) Show that $FO_{=}^3$ does not have the finite model property. c) Does $FOC_{=}^2$ have the finite model property?

FOC (first-order logic with counting) extends FO by the following quantifier for each $n \in \mathbb{N}$: $\exists_{\geq n} x \varphi(x)$,

 $\mathfrak{A} \models \exists_{\geq n} x \varphi(x)$ iff $\mathfrak{A} \models \varphi(a)$ for at least *n* distinct $a \in A$.

 $FOC_{=}^{2}$ is the two-variable fragment of FOC.