Finite model theory Problems 1 Tuesday 13.9.2016

1. Give examples of the following types of binary relations R:

- 1. R is reflexive, symmetric, but not transitive.
- 2. R is a partial-order but not a linear-order.

2. Let X be a set of cardinality n, and $k \in \mathbb{N}$. Determine the number of k-ary relations over X. How many of those are symmetric?

3. Let τ be a finite vocabulary. Show that the number of non-isomorphic τ -models of cardinality n is bounded by $2^{p(n)}$, where p(x) is a polynomial function.

4. Let f be a homomorphism from \mathfrak{A} to \mathfrak{B} , and g a homomorphism from \mathfrak{B} to \mathfrak{C} . Show that $g \circ f$ is a homomorphism from \mathfrak{A} to \mathfrak{C} .

5. Let \mathfrak{A} and \mathfrak{B} be $\{f\}$ -models. Let $R_f^{\mathfrak{A}}$ and $R_f^{\mathfrak{B}}$ denote the graphs of the functions $f^{\mathfrak{A}}$ and $f^{\mathfrak{B}}$, that is

$$R_f^{\mathfrak{A}} = \{ (\overline{a}, f^{\mathfrak{A}}(a)) : \overline{a} \in \text{Dom}(\mathfrak{A})^{ar(f)} \}.$$

Let $h : \text{Dom}(\mathfrak{A}) \to \text{Dom}(\mathfrak{B})$ be a function. Show that h is a homomorphism from \mathfrak{A} and \mathfrak{B} if and only if h is a homorphism from \mathfrak{A}^* to \mathfrak{B}^* , where \mathfrak{A}^* (\mathfrak{B}^*) is the $\{P\}$ -model such that $P^{\mathfrak{A}^*} = R_f^{\mathfrak{A}}$ ($P^{\mathfrak{B}^*} = R_f^{\mathfrak{B}}$).

6. Let $\mathbb{G} = (V, E)$ be a graph of cardinality at least 6. Show that there exists $a, b, c \in V$ such that either $\{(a, b), (b, c), (c, a)\} \subseteq E$ or $\{(a, b), (b, c), (c, a)\} \subseteq E^c$, where $E^c = V^2 - E$.