EVOLUTION AND THE THEORY OF GAMES

STEFAN GERITZ, HELSINKI, 2016

Exercises 21-09-2016

4. (a) Show that if $x_i \in \mathbb{X}$ is a strictly dominated pure strategy and $(\hat{x}, \hat{y}) \in \mathbb{X} \times \mathbb{Y}$ is a Nash equilibrium, then x_i cannot be in the support of \hat{x} . (b) Show that this conclusion need not be true if x is only weakly dominated. To show the latter, use the payoff matrix

	У1	y_2	y ₃
\mathbf{x}_1	3, 2	3, 0	2, 2
x ₂	1, 0	3, 3	0, 3
X3	0, 2	0, 0	[3, 2]

5. From Wikipedia: "In game theory, the Stag Hunt is a game that describes a conflict between safety and social cooperation." It describes "a situation in which two individuals go out on a hunt. Each can individually choose to hunt a stag or hunt a hare. Each player must choose an action without knowing the choice of the other. If an individual hunts a stag, they must have the cooperation of their partner in order to succeed. An individual can get a hare by themself, but a hare is worth less than a stag." Calculate all Nash equilibria (pure and mixed) for the Stag Hunt with payoff matrix

	Stag	Hare		
Stag	2, 2	0, 1		
Hare	1, 0	1, 1		
N.B., a stag is a male deer.				

6. Calculate all ESS-s (pure and mixed) for the Hawk-Dove game with payoff matrix

	Н	D
Η	$\frac{R-C}{2}$, $\frac{R-C}{2}$	R, 0
D	0, R	$\frac{R}{2}$, $\frac{R}{2}$

Distinguish between the cases (a) R > C, (b) R = C and (c) R < C.