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When quitting the game is an option . . .

1. Quitting strategies. Deliberately quitting the iterated prisoner’s dilemma
traditionally has not been considered a strategic option 1. However, it is not at all
unthinkable that under certain circumstances it may be better to quit a game than
to continue it, especially when you are loosing. The “certain circumstances” here
refer to the wider context in which the game is embedded: if you quit playing, will
you start a new game with another player, or will you play another kind of game
altogether and what game would that be, or was this game that you just quitted
all there is?

Quitting can be built into any strategy simply by adding a “quitting rule”. For
example, consider the TFT strategy with the additional rule:

“Quit whenever you receive a low payoff (S or P ).”

Of course, the game may be terminated for other (random) reasons, but that is
already taken care of by the discounting factor δ ∈ (0, 1).

Let’s see how this works out for two strategies allC* and allD*, which are like allC
and allD but with the above quitting rule.

allC*×allC* gets immediately in a (C×C)-cycle. The payoff per round is R to
both players, so neither of the two will deliberately quit. The expected number of
rounds is (1− δ)−1, so the overall payoff to both players is R/(1− δ).

allC*×allD*gives the sucker’s payoff S to the allC* player, who therefore quits.
The allD* player gets the payoff T and would like to continue, but cannot because
his co player quits.

allD*×allD* gives the payoff P to both players, who thereafter quit.

The overall payoff matrix thus becomes

1I found only one paper on this topic written by S. Moresi & S. C. Salop; the precise coordinates
I still have to look up . . .
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allC* allD*

allC* R
1−δ S

allD* T P

If an individual plays only one game in his life, then allD* is an ESS because
P > S. But also allC* is an ESS if R/(1− δ) > T , i.e., if 1− R/T < δ < 1, or in
yet other words, if the probability of entering the next round is sufficiently large.
Note how this is different in the original allC versus allD (without the asterisk,
i.e., without a quitting rule) where allC is never an ESS and allD is always an ESS.

2. The population dynamical context.

Now suppose that after termination of the PD game (either by deliberately quitting
or by other random causes as modelled by the discounting facto δ) both players
choose a new opponent randomly selected from the population at large to start a
new game.

We then have to take into account that the expected number of round per game
is different for different strategy combinations. For example, the allC*×allC*
contest in the previous section lasts on average (1 − δ)−1 > 1 rounds, while all
other combinations last exactly one round.

I do not think the players that have quitted after the first round will wait for the
allC*×allC* pairs to finish their play, which may take a very long time, especially
when δ is close to one. Instead I think that as soon as a game is over, the players
that have quitted will immediately look for a new partner and start a new game.
Anyways, this is what we shall assume.

As a consequence, the number of games played during a player’s life-time will be
different for different strategies. The question is how this affects the conclusion in
the previous section about the evolutionary stability of the strategy allC*?

To answer that question, we have to embed the game in a wider population dy-
namical context. This is what we do in the next two sections.

3. The short time scale without births and deaths

Here is one possible way to embed a game (any game) with a quitting rule into a
population dynamical model:

Consider the strategies S1 and S2. Then there are four kinds of contests: S1 × S1,
S1× S2, S2× S1 and S2× S2. In a general Si× Sj contest we shall always associate
Si (i.e., the one listed first) with the row player and Sj (i.e., the one listed second)
with the column player.
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Let aijk denote the payoff to the Si player during the kth round of a (Si×Sj)-contest,
and let kij denote the round after which either or both players would quit if the
game were still on. As it take two players to play, necessarily kij = kji. (Note that
it may happen that kij = ∞, as in an allC*×allC* contest where neither player
intends to quit ever.) The total expected payoff to the Si player accumulated over
all rounds then is

(1) aij =

kij∑
k=1

aijkδ
k−1,

and so the payoff matrix A of a single game is given by

S1 S2

S1 a11 a12
Si a21 a22

We shall assume an infinitely large population of players, i.e., infinite in number of
individuals but not in terms of population densities, which are finite. Then, after
each round there will be “free individuals”, i.e., individuals that are no longer
playing, because their game terminated at the end of the last round. Before the
next round starts (we count time in the number of rounds τ = 1, 2, 3, . . . since
we started looking at the population), these free individuals are paired again,
randomly and without replacement. Let si denote the population density of free
Si individuals. The probability of forming a Si × Sj pair is then

(2)
si(τ)

s1(τ) + s2(τ)
· sj(τ)

s1(τ) + s2(τ)
,

and the population density of newly formed pairs is

(3)
s1(t) + s2(t)

2
.

Consequently, the population density sij1 of Si × Sj contests in their first round
is

(4) sij1(t+ 1) =
1

2

si(t)sj(t)

s1(t) + s2(t)
,

and for the population density sijk of Si×Sj contests that just start their kth round
we have

(5) sijk(t+ 1) = δ sij(k−1)(t) (k = 1, . . . , kij).

Ignoring births and deaths (which we assume take place on a different and much
longer timescale) the population will reach a quasi equilibrium that satisfies

(6) sijk =
1

2
δk−1 sisj

s1 + s2
(k = 1, . . . , kij).
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At the quasi-equilibrium, the payoff per round to all Si players together is

(7)
2∑
j=1

kij∑
k=1

aijksijk,

which, using (6), can be written as

(8) si

2∑
j=1

aij sj
s1 + s2

where the aij are the same as in equation (1).

4. The long time scale with births and deaths

We now turn to a slower time scale t where births and death can no longer be
ignored. In terms of this slower time, the length of a single round of a game is
only a very small ε > 0.

Suppose that S1 players produce only S1-offspring and S2 players only S2-offspring.
Assume further that reproduction is proportional to the payoff received (with
proportionality constant α > 0) and that the per capita death rate µ(t) is strategy-
independent. Then from (8) we get

(9) si(t+ ε) = si(t) + ε α si

2∑
j=1

aij sj
s1 + s2

− ε µ(t) si(t)

for i = 1, 2. Subtracting si(t) from both sides, dividing by ε and letting ε→ 0, we
get the differential equation

(10) ṡi = α si

2∑
j=1

aij sj
s1 + s2

− µ(t) si.

This equation can be rewritten in terms of relative frequencies

pi :=
si

s1 + s2
,

which gives the purely frequency-dependent equation

(11) ṗi = pi

(
2∑
j=1

ai,j pj −
2∑

j1=1

2∑
j2=1

pj1aj1j2pj2

)

for i = 1, 2.
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4. Back to payoff matrices

To address the question “who can invade whom?”, let p1 = p represent the fre-
quency of the (initially rare) invader strategy S1 and p2 = 1 − p the frequency of
the (initially common) resident strategy S2, and rewrite (12) as

(12) ṗ = p(1− p)
(
a12 − a22 − p(a12 − a22 + a21 − a11)

)
.

The factor p(1 − p) is non-negative, and hence invasion (or not) depend on the
sign of the remaining factor: if positive, then S1 can invade, but if negative, then
it cannot. This leads to the non-invadability conditions

(1) a12 < a22 or

(2) a12 = a22 and a21 > a11.

Note that these are the common ESS conditions for S2 being an ESS given the
payoff matrix A of a single game, i.e.,

S1 S2

S1 a11 a12
Si a21 a22

in which we do not take into account that free individuals can pair-up again. So,
the grand conclusion is that the random pairing-up of free individuals to start a
new game while other games are still going on does not make any difference for
the ESS calculations.


