

Exercise 1: (chapter 6.2) Let $\{Y_i\}_{i=1}^n$ be independent and identically distributed random variables that follow a Bernoulli distribution with parameter $0 \le \theta \le 1$. The probability mass function of the Bernoulli distribution is

$$p_Y(y) = \Pr(Y = y) = \theta^y (1 - \theta)^{1-y} \qquad y \in \{0, 1\}.$$

Let the prior on θ be improper with density $p(\theta) \propto \theta^{-1}(1-\theta)^{-1}$.

- 1. Find the posterior $p(\theta | y)$ and the corresponding normal approximation at its mode.
- 2. Show that the improper prior on θ is equivalent to a uniform prior on the logit $\beta = \log\{\theta/(1-\theta)\}$.
- 3. Find the posterior $p(\beta | y)$ and the corresponding normal approximation at its mode.
- 4. Is it more sensible to derive a normal approximation on the probability or logit scale?

Exercise 2 (chapter 6.2): Let $\{Y_i\}_{i=1}^n$ be independent and identically distributed random variables that follow a Poisson distribution with rate parameter $\lambda > 0$. The probability mass function of the Poisson distribution is

$$p_Y(y) = \Pr(Y = y) = \frac{\lambda^y}{y!} \exp\{-\lambda\}$$
 $y = 0, 1, \dots$

Assume that $\mathbb{E}[\lambda] = 2$ and $\Pr(\lambda > 3) = 0.01$.

- 1. Describe the prior on λ by a normal distribution and find the posterior $p(\lambda | y)$.
- 2. Derive a normal approximation to the posterior $p(\lambda | y)$ at its mode using 100 Poisson observations

y_i	0	1	2	3	4	5	≥ 6
#	18	32	27	15	6	2	0

and compute the posterior probability $\Pr(\lambda > 2 | y)$.

- 3. Although $\lambda > 0$, the support of the normal prior on λ is unconstrained. Which reparameterization under the bijection $\theta = g(\lambda) \Leftrightarrow \lambda = h(\theta)$ would yield an unconstrained parameter? Describe the prior on θ by a normal distribution using $\mathbb{E}[\theta] = \log 2$ and $\Pr(\theta > \log 3) = 0.01$ and find the posterior $p(\theta | y)$.
- 4. Derive a normal approximation to the posterior $p(\theta | y)$ at its mode using same data as above and compute the posterior probability $Pr(\lambda > 2 | y)$ by translating back to the original parameter space (you may use R to find the mode and observed Fisher information).

Exercise 3 (chapter 6.2): Let $\{Y_i\}_{i=1}^n$ be independent and identically distributed random variables that follow an Exponential distribution with rate parameter $\lambda > 0$. The density of the Exponential

distribution is

$$f_Y(y) = \lambda \exp\{-\lambda y\}$$
 $y > 0$.

Assume that the prior on λ can be described by the following density

$$p(\lambda) \propto \exp\left\{-20(\lambda - 0.25)^2\right\} \qquad \lambda > 0$$

- 1. Find the posterior $p(\lambda | y)$ and an expression for the normalizing constant.
- 2. Derive a normal approximation to the posterior at its mode using n = 10 and $\bar{y} = 0.5$. Plot the normal approximation together with the true posterior density.

Exercise 4: Let $\{Y_i\}_{i=1}^n$ be independent and identically distributed random variables that follow an Normal distribution with location μ and precision parameter $\tau > 0$. The density of the Normal distribution with precision parameter τ is

$$f_Y(y) = \sqrt{\frac{\tau}{2\pi}} \exp\left\{-\frac{\tau}{2}(y-\mu)^2\right\}.$$

Assume that $\mu \mid \tau \sim \text{Normal}(0, \tau^{-1})$ and $\tau \sim \text{Gamma}(1, 1)$.

- 1. Derive the variational densities $q^{\star}(\mu \mid y) = \exp\{\mathbb{E}_{\tau}[\ln p(\mu, \tau, y)] \ln c_{\mu}\}$ and $q^{\star}(\tau \mid y)$ under the mean-field assumption.
- 2. Implement a variational algorithm that refines the parameters of the variational distribution until convergence occurs.
- 3. Compare the variational algorithm to Gibbs sampling with respect to bias and speed using the following simulated data: set.seed(50) ; y <- rnorm(100)</p>