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Exercise 1: (chapter 6.2) Let {Yi}ni=1 be independent and identically distributed random variables

that follow a Bernoulli distribution with parameter 0 ≤ θ ≤ 1. The probability mass function of the

Bernoulli distribution is

pY (y) = Pr(Y = y) = θy(1− θ)1−y y ∈ {0, 1} .

Let the prior on θ be improper with density p(θ) ∝ θ−1(1− θ)−1.

1. Find the posterior p(θ | y) and the corresponding normal approximation at its mode.

2. Show that the improper prior on θ is equivalent to a uniform prior on the logit β = log{θ/(1− θ)}.

3. Find the posterior p(β | y) and the corresponding normal approximation at its mode.

4. Is it more sensible to derive a normal approximation on the probability or logit scale?

Exercise 2 (chapter 6.2): Let {Yi}ni=1 be independent and identically distributed random variables

that follow a Poisson distribution with rate parameter λ > 0. The probability mass function of the

Poisson distribution is

pY (y) = Pr(Y = y) =
λy

y!
exp{−λ} y = 0, 1, . . .

Assume that E[λ] = 2 and Pr(λ > 3) = 0.01.

1. Describe the prior on λ by a normal distribution and find the posterior p(λ | y).

2. Derive a normal approximation to the posterior p(λ | y) at its mode using 100 Poisson observations

yi 0 1 2 3 4 5 ≥ 6
# 18 32 27 15 6 2 0

and compute the posterior probability Pr(λ > 2 | y).

3. Although λ > 0, the support of the normal prior on λ is unconstrained. Which reparameterization

under the bijection θ = g(λ) ⇔ λ = h(θ) would yield an unconstrained parameter? Describe

the prior on θ by a normal distribution using E[θ] = log 2 and Pr(θ > log 3) = 0.01 and find the

posterior p(θ | y).

4. Derive a normal approximation to the posterior p(θ | y) at its mode using same data as above and

compute the posterior probability Pr(λ > 2 | y) by translating back to the original parameter space

(you may use R to find the mode and observed Fisher information).

Exercise 3 (chapter 6.2): Let {Yi}ni=1 be independent and identically distributed random variables

that follow an Exponential distribution with rate parameter λ > 0. The density of the Exponential
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distribution is

fY (y) = λ exp{−λy} y > 0 .

Assume that the prior on λ can be described by the following density

p(λ) ∝ exp
{
−20(λ− 0.25)

2
}

λ > 0 .

1. Find the posterior p(λ | y) and an expression for the normalizing constant.

2. Derive a normal approximation to the posterior at its mode using n = 10 and ȳ = 0.5. Plot the

normal approximation together with the true posterior density.

Exercise 4: Let {Yi}ni=1 be independent and identically distributed random variables that follow an Nor-

mal distribution with location µ and precision parameter τ > 0. The density of the Normal distribution

with precision parameter τ is

fY (y) =

√
τ

2π
exp

{
−τ

2
(y − µ)2

}
.

Assume that µ | τ ∼ Normal
(
0, τ−1

)
and τ ∼ Gamma(1, 1).

1. Derive the variational densities q⋆(µ | y) = exp{Eτ [ln p(µ, τ, y)]− ln cµ} and q⋆(τ | y) under the

mean–field assumption.

2. Implement a variational algorithm that refines the parameters of the variational distribution until

convergence occurs.

3. Compare the variational algorithm to Gibbs sampling with respect to bias and speed using the

following simulated data: set.seed( 50 ) ; y <- rnorm( 100 )
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