University of Helsinki

Department of Mathematics and Statistics

Computational statistics $\mathbf{1}$ - solutions exercise set $\mathbf{0}$

Exercise 1 (chapter 1.4): Conditionally on $\Theta=\theta,\left\{Y_{i}\right\}_{i=1}^{n}$ are independent and identically distributed random variables that follow an exponential distribution with rate θ. The density of the exponential distribution is

$$
p(y \mid \theta)=\theta \exp \{-\theta y\}, \quad y>0 .
$$

Let the prior on Θ be a Gamma distribution with shape $\alpha=1$ and rate $\beta=1$. There are two datasets:

1. $n=5$ and $\bar{y}=n^{-1} \sum_{i=1}^{n} y_{i}=0.25$
2. $n=100$ and $\bar{y}=0.25$

For both datasets, plot the prior, likelihood, the product of prior and likelihood as well as the posterior density (which happens to be a Gamma density).

Solution: The density of the Gamma prior on Θ is

$$
p(\theta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} \exp \{-\beta \theta\} \quad \theta, \alpha, \beta>0
$$

The likelihood of Θ is

$$
p(y \mid \theta)=\prod_{i=1}^{n} \theta \exp \left\{-\theta y_{i}\right\}=\theta^{n} \exp \{\theta n \bar{y}\}
$$

Combining the prior density and likelihood, the posterior density of Θ is proportional to

$$
p(\theta \mid y) \propto p(y \mid \theta) p(\theta)=\theta^{n} \exp \{\theta n \bar{y}\} \theta^{\alpha-1} \exp \{-\beta \theta\}=\theta^{\alpha+n-1} \exp \{-\theta(\beta+n \bar{y})\}
$$

which represents the kernel of a $\operatorname{Gamma}(\theta \mid \alpha+n, \beta+n \bar{y})$ distribution.

Exercise 2 (chapter 1.4): For the statistical model from Exercise 1, find a closed form formula for the predictive density

$$
p\left(y^{*} \mid y\right)=\int_{\Theta} p\left(y^{*}, \theta \mid y\right) \mathrm{d} \theta=\int_{\Theta} p\left(y^{*} \mid \theta\right) p(\theta \mid y) \mathrm{d} \theta
$$

of a new observation y^{*}. Evaluate and plot the predictive density for the first dataset from Exercise 1 by setting up a grid for the y^{*} values.

Solution: The predictive density is

$$
\begin{aligned}
p\left(y^{*} \mid y\right) & =\int_{0}^{\infty} \theta \exp \left\{-\theta y^{*}\right\} \frac{(\beta+n \bar{y})^{\alpha+n}}{\Gamma(\alpha+n)} \theta^{\alpha+n-1} \exp \{-\theta(\beta+n \bar{y})\} \mathrm{d} \theta \\
& =\frac{(\beta+n \bar{y})^{\alpha+n}}{\Gamma(\alpha+n)} \int_{0}^{\infty} \theta^{\alpha+n} \exp \left\{-\theta\left(\beta+y^{*}+n \bar{y}\right)\right\} \mathrm{d} \theta \\
& =\frac{(\beta+n \bar{y})^{\alpha+n}}{\Gamma(\alpha+n)} \frac{\Gamma(\alpha+n+1)}{\left(\beta+y^{*}+n \bar{y}\right)^{\alpha+n+1}} \\
& =\frac{(\alpha+n)(\beta+n \bar{y})^{\alpha+n}}{\left(\beta+y^{*}+n \bar{y}\right)^{\alpha+n+1}}
\end{aligned}
$$

where the integral in the second line is the inverse of the normalizing constant of a Gamma distribution and the last line used the following property of the Gamma function: $\Gamma(x+1)=x \Gamma(x)$.

Exercise 3 (chapter 2.7): The joint conditional distribution of Y^{*} and Θ factorizes as

$$
p\left(y^{*}, \theta \mid y\right)=p\left(y^{*} \mid \theta\right) p(\theta \mid y)
$$

because the random variables Y and Y^{*} are conditionally independent given $\Theta=\theta$. Derive this results from the multiplication rule for conditional distributions.

Predictive (n1)

Solution: Using the multiplication rule and conditional independence of Y and Y^{*} given $\Theta=\theta$ gives

$$
p\left(y^{*}, \theta \mid y\right)=p\left(y^{*} \mid y, \theta\right) p(\theta \mid y)=p\left(y^{*} \mid \theta\right) p(\theta \mid y)
$$

Exercise 4 (chapter 2.10): Let the random variable X follow a Gamma distribution with shape $\alpha>0$ and rate $\beta>0$. There is only information about $Y=g(X)=X^{-1}$. The distribution of Y is the Inverse-Gamma distribution with parameters α and β.

1. Find the density of Y using a change-of-variables:

$$
f_{Y}(y)=f_{X}(x)\left|\frac{\mathrm{d} x}{\mathrm{~d} y}\right|=f_{X}(h(y))\left|h^{\prime}(y)\right| \text { under the bijection } y=g(x) \Leftrightarrow x=h(y)
$$

2. Find a formula for the mode (i.e. the maximum point) of the density of Y
3. Find the expectation $\mathbb{E}[Y]$ assuming $\alpha>1$ using $\mathbb{E}\left[X^{-1}\right]$

Solution: The density of Y is

$$
f_{Y}(y)=f_{X}(x)\left|\frac{\mathrm{d} x}{\mathrm{~d} y}\right|=\frac{\beta^{\alpha}}{\Gamma(\alpha)}\left(\frac{1}{y}\right)^{\alpha-1} \exp \left\{-\frac{\beta}{y}\right\} \frac{1}{y^{2}}=\frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{-\alpha-1} \exp \{-\beta / y\} \quad y>0
$$

The mode of $f_{Y}(y)$ is

$$
\frac{\mathrm{d} \log f_{Y}(y)}{\mathrm{d} y}=-\frac{\alpha+1}{y}+\frac{\beta}{y^{2}} \stackrel{!}{=} 0 \Rightarrow y=\frac{\beta}{\alpha+1}
$$

The second derivative is

$$
\frac{\mathrm{d}^{2} \log f_{Y}(y)}{\mathrm{d} y^{2}}=\frac{\alpha+1}{y^{2}}-\frac{2 \beta}{y^{3}}
$$

which is negative at $y=\beta /(\alpha+1)$ showing that it is a maximum point. The expectation of Y is

$$
\begin{aligned}
\mathbb{E}[Y]=\mathbb{E}\left[X^{-1}\right] & =\int_{0}^{\infty} \frac{1}{x} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp \{-\beta x\} \mathrm{d} x \\
& =\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{(\alpha-1)-1} \exp \{-\beta x\} \mathrm{d} x \\
& =\frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha-1)}{\beta^{\alpha-1}}=\frac{\beta}{\alpha-1} \quad \alpha>1 .
\end{aligned}
$$

Exercise 5 (chapter 2.10): Let the random variables $\left\{X_{i}\right\}_{i=1}^{3}$ follow independently Gamma distributions with shape $\alpha_{1}, \alpha_{2}, \alpha_{3}>0$ and rate $\beta_{1}=\beta_{2}=\beta_{3}=1$. Using a multivariate change-of-variables

$$
Y_{1}=\frac{X_{1}}{X_{1}+X_{2}+X_{3}} \quad Y_{2}=\frac{X_{2}}{X_{1}+X_{2}+X_{3}} \quad S=X_{1}+X_{2}+X_{3}
$$

find the joint density of Y_{1}, Y_{2} and S. Find also the joint density of Y_{1} and Y_{2} by integrating out S (which happens to be a Dirichlet distribution).

Solution: The change-of-variables gives

$$
X_{1}=Y_{1} S \quad X_{2}=Y_{2} S \quad X_{3}=S\left(1-Y_{1}-Y_{2}\right)
$$

The determinant of the Jacobian matrix is required for the change-of-variable:

$$
\left|\frac{\partial x_{1}, x_{2}, x_{3}}{\partial y_{1}, y_{2}, s}\right|=\operatorname{det}\left[\begin{array}{ccc}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} & \frac{\partial x_{1}}{\partial s} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} & \frac{\partial x_{2}}{\partial s} \\
\frac{\partial x_{3}}{\partial y_{1}} & \frac{\partial x_{3}}{\partial y_{2}} & \frac{\partial x_{3}}{\partial s}
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
s & 0 & y_{1} \\
0 & s & y_{2} \\
-s & -s & 1-y_{1}-y_{2}
\end{array}\right]=s^{2} .
$$

The joint density of Y_{1}, Y_{2} and S is then

$$
\begin{aligned}
f_{Y_{1}, Y_{2}, S}\left(y_{1}, y_{2}, s\right)= & f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right)\left|\frac{\partial x_{1}, x_{2}, x_{3}}{\partial y_{1}, y_{2}, s}\right| \\
= & \frac{1}{\Gamma\left(\alpha_{1}\right)}\left(y_{1} s\right)^{\alpha_{1}-1} e^{-y_{1} s} \times \\
& \frac{1}{\Gamma\left(\alpha_{2}\right)}\left(y_{2} s\right)^{\alpha_{2}-1} e^{-y_{2} s} \times \\
& \frac{1}{\Gamma\left(\alpha_{3}\right)}\left(s\left[1-y_{1}-y_{2}\right]\right)^{\alpha_{3}-1} e^{-\left(1-y_{1}-y_{2}\right) s} \times \\
& s^{2} \\
= & \frac{y_{1}^{\alpha_{1}-1} y_{2}^{\alpha_{2}-1}\left(1-y_{1}-y_{2}\right)^{\alpha_{3}-1}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}\right)} s^{\alpha_{1}+\alpha_{2}+\alpha_{3}-1} e^{-s}
\end{aligned}
$$

The marginal density of Y_{1} and Y_{2} is

$$
\begin{aligned}
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) & =\int_{0}^{\infty} f_{Y_{1}, Y_{2}, S}\left(y_{1}, y_{2}, s\right) \mathrm{d} s \\
& =\frac{y_{1}^{\alpha_{1}-1} y_{2}^{\alpha_{2}-1}\left(1-y_{1}-y_{2}\right)^{\alpha_{3}-1}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}\right)} \int_{0}^{\infty} s^{\alpha_{1}+\alpha_{2}+\alpha_{3}-1} e^{-s} \mathrm{~d} s \\
& =\frac{\Gamma\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}\right)} y_{1}^{\alpha_{1}-1} y_{2}^{\alpha_{2}-1}\left(1-y_{1}-y_{2}\right)^{\alpha_{3}-1} \quad y 1, y 2>0 \text { and } 0<y_{1}+y_{2}<1
\end{aligned}
$$

where the integral in the second line is the inverse of the normalizing constant of a Gamma distribution. The marginal density is that of a Dirichlet distribution with parameters α_{1}, α_{2} and α_{3}.

Exercise 6 (chapter 3.2): Let the random variable X follow a Pareto distribution with shape $\alpha>0$ and scale $x_{m}>0$. The density of the Pareto distribution is

$$
f_{X}(x)=\frac{\alpha x_{m}^{\alpha}}{x^{\alpha+1}}, \quad x \geq x_{m}
$$

Derive the inverse transformation method to simulate from the Pareto distribution (there is no function in the standard packages of R).

Solution: The cumulative distribution function of X is

$$
F_{X}(x)=1-\left(\frac{x_{m}}{x}\right)^{\alpha} \quad x \geq x_{m}
$$

The quantile function $F_{X}^{-1}(u)$ is now straightforward to derive

$$
F_{X}^{-1}(u)=\frac{x_{m}}{(1-u)^{1 / \alpha}} \quad 0<u<1 .
$$

The inverse transform method is then

$$
\begin{aligned}
\text { Simulate } U & \sim \operatorname{Unif}(0,1) \\
\text { Set } X & =\frac{x_{m}}{U^{1 / \alpha}}
\end{aligned}
$$

A sample of 10000 random numbers from the Pareto distribution can be generated in R.

Exercise 7 (chapter 3.4): Let $f_{X}(x)$ be the density of a continuously distributed random variable X. The cumulative distribution $F_{X}(x)$ and quantile function $F_{X}^{-1}(u)$ with $u \in(0,1)$ are known. Derive the inverse transformation method when the distribution of X is truncated to the interval $I=(a, b)$ with $a<b$. The density of the truncated distribution is proportional to the unnormalized density

$$
g_{X}^{*}(x) \propto f_{X}(x) 1_{(a, b)}(x)
$$

Start by determining the normalizing constant k such that $g_{X}(x)=g_{X}^{*}(x) / k$ is a density and then derive
alpha <- 3
xm <- 1
$\mathrm{x}<-\mathrm{xm} /$ runif(10000) ${ }^{\wedge}(1 / \mathrm{alpha})$
$\operatorname{par}(\operatorname{mar}=c(3,3,2,2)$, las =1)
hist(x, breaks = "Scott", probability = TRUE, xlim = c(0, 5), xlab = "", ylab = "")

Histogram of x

the cumulative distribution $G_{X}(x)$ and quantile function $G_{X}^{-1}(u)$ of the truncated distribution.

Solution: The normalizing constant of $g_{X}(x)$ is

$$
1=\int_{-\infty}^{\infty} g_{X}(x) \mathrm{d} x=\frac{1}{k} \int_{-\infty}^{\infty} g_{X}^{*}(x) \mathrm{d} x=\frac{1}{k} \int_{a}^{b} f_{X}(x) \mathrm{d} x=\frac{F_{X}(b)-F_{X}(a)}{k} \Rightarrow k=F_{X}(b)-F_{X}(a)
$$

For $a<x<b$, the cumulative distribution function is

$$
G_{X}(x)=\int_{a}^{x} g_{X}(t) \mathrm{d} t=\frac{1}{F_{X}(b)-F_{X}(a)} \int_{a}^{x} f_{X}(t) \mathrm{d} t=\frac{F_{X}(x)-F_{X}(a)}{F_{X}(b)-F_{X}(a)}
$$

The quantile function is now straightforward to derive

$$
G_{X}^{-1}(u)=F_{X}^{-1}\left\{F_{X}(a)+u\left[F_{X}(b)-F_{X}(a)\right]\right\} \quad 0<u<1
$$

The inverse transform method is then

Simulate $U \sim \operatorname{Unif}(0,1)$
Set $X=F_{X}^{-1}\left\{F_{X}(a)+U\left[F_{X}(b)-F_{X}(a)\right]\right\}$.

