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1. Fourier series, real formulation

Assume that the function f : R → R is 2π-periodic (in other words,
satisfies f(x) = f(x + ν2π) for any ν ∈ Z) and can be written in the
form

(1) f(x) = a0 +
∞∑
n=1

(an cos(nx) + bn sin(nx)) ,

where a0, a1, a2, . . . and b1, b2, . . . are real-valued coefficients.
Computationally it is very useful to consider approximations of func-

tions and signals by truncated Fourier series

(2) f(x) ≈ a0 +
N∑
n=1

(an cos(nx) + bn sin(nx)) .

Then the practical question is: given f , how to determine the coeffi-
cients a0, a1, a2, . . . , aN and b1, b2, . . . , bN? Let us derive formulas for
them.

The constant coefficient a0 is found as follows. Integrate both sides
of (1) from 0 to 2π:∫ 2π

0

f(x)dx = a0

∫ 2π

0

dx+

+
∞∑
n=1

an

∫ 2π

0

cos(nx)dx+

+
∞∑
n=1

bn

∫ 2π

0

sin(nx)dx,(3)

where we assumed that the orders of infinite summing and integration
can be interchanged. Now it is easy to check that

∫ 2π

0
cos(nx)dx = 0

and
∫ 2π

0
sin(nx)dx = 0 and

∫ 2π

0
dx = 2π. Therefore,

(4) a0 =
1

2π

∫ 2π

0

f(x)dx,

which can be interpreted as the average value of the function f over
the interval [0, 2π].
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Further, fix any integer m ≥ 1 and multiply both sides of (1) by
cos(mx). Integration from 0 to 2π gives∫ 2π

0

f(x) cos(mx)dx = a0

∫ 2π

0

cos(mx)dx+

+
∞∑
n=1

an

∫ 2π

0

cos(nx) cos(mx)dx+

+
∞∑
n=1

bn

∫ 2π

0

sin(nx) cos(mx)dx.(5)

We already know that
∫ 2π

0
cos(mx)dx = 0, so the term containing a0

in the right hand side of (5) vanishes. Clever use of trigonometric
identities allows one to see that

(6)

∫ 2π

0

sin(nx) cos(mx)dx = 0 for all n ≥ 1,

and that

(7)

∫ 2π

0

cos(nx) cos(mx)dx = 0 for all n ≥ 1 with n 6= m.

The checking of (6) and (7) is left as an exercise. So actually the only
nonzero term in the right hand side of (5) is the one containing the
coefficient am. Another exercise is to verify this identity:

(8)

∫ 2π

0

cos(nx) cos(nx)dx = π.

Therefore, substituting (8) into (5) gives

(9) an =
1

π

∫ 2π

0

f(x) cos(nx)dx.

A similar derivation shows that

(10) bn =
1

π

∫ 2π

0

f(x) sin(nx)dx.

One might be tempted to ask: what kind of functions allow a rep-
resentation of the form (1)? Or: in what sense does the right-hand
sum converge in (2) as N → ∞? Also: under what assumptions can
the order of infinite summing and integration can be interchanged in
the derivations of (3) and (5)? These are deep and interesting math-
ematical questions which will not be further discussed in this short
note.
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2. Fourier series, complex formulation

Parametrize the boundary of the unit circle as

{(cos θ, sin θ) | 0 ≤ θ < 2π}.
We will use the Fourier basis functions

(11) ϕn(θ) = (2π)−1/2einθ, n ∈ Z.
We can approximate 2π-periodic functions f : R → R following the
lead of the great applied mathematician Joseph Fourier (1768–1830).
Define cosine series coefficients using the L2 inner product

f̂n := 〈f, ϕn〉 =

∫ 2π

0

f(θ)ϕn(θ) dθ, n ∈ Z.

Then, for nice enough functions f , we have

f(θ) ≈
N∑

n=−N

f̂n ϕn(θ)

with the approximation getting better when N grows.
Note that the functions ϕn are orthogonal:

〈ϕn, ϕn〉 = δnm.


