Contents

Statistical methods in public health
Adjusted means based on regression models and delta method

Tommi Härkänen

National Institute for Health and Welfare (THL)
Department of Health (TERO)
October 6, 2015

Statistical methods in public health
 $\left\llcorner_{\text {Predicted mean }}\right.$

Revisit back-door adjustment
Back-door adjustment
If a set of variables Z satisfies the back-door criterion relative to (X, Y), then the causal effect of X on Y is identifiable and is given by the formula

$$
\begin{equation*}
\mathbb{P}\{y \mid x\}=\sum_{z} \mathbb{P}\{y \mid x, z\} \mathbb{P}\{z\} \tag{1}
\end{equation*}
$$

Note that in (1)

Intervention $\mathbb{P}\{y \mid x\}$ is the predicted probability of $Y=y$ when the value of X is fixed to x. (Pearl uses notation $d o(x)$)
(Direct) standardization The r.h.s. is a weighted average of probabilities $\mathbb{P}\{y \mid x, z\}$ estimated from subsets (x, z) and $\mathbb{P}\{z\}$ prevalence of the blocking variables $Z=z$.

Predicted mean

Delta method for variance estimation

Population Attributable Fraction

Statistical methods in public health
 Delta method for variance estimatio

Approximating a function by Taylor series
For example, let

Taylor series

The Taylor series of a real or complex-valued function $f(x)$ that is infinitely differentiable at a real or complex number a is the power series

$$
\begin{equation*}
f(x) \approx \sum_{k=0}^{m} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \tag{2}
\end{equation*}
$$

(Derivative of order zero $f^{(0)}:=f$, $0!:=1,(x-a)^{0}:=1$.)
$f(x):=1 /(1+\exp \{-x\})$ and $a:=0.5$:

Delta method

Recall that if X is a random variable with $\mathbb{E}[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$. Then

- $\mathbb{E}[c(X-a)]=c(\mu-a)$ and
- $\operatorname{Var}(c(X-a))=c^{2} \sigma^{2}$.

Recall the first terms of the Taylor series:

$$
f(X) \approx f(a)+f^{(1)}(a)(X-a)+o(X-a)
$$

Choose $a:=\mu$. Then expectation of $2^{\text {nd }}$ term equals zero, and variance $\operatorname{Var}(X)\left[f^{(1)}(\mu)\right]^{2}$. Remainder $o(X-\mu)$ can be omitted if X is near a.

Univariate delta method
If for a sequence of random variables $X_{n} \sqrt{n}\left(X_{n}-\mu\right) \rightarrow N\left(0, \sigma^{2}\right)$, then

$$
\begin{equation*}
\sqrt{n}\left(f\left(X_{n}\right)-f(\mu)\right) \rightarrow N\left(0, \sigma^{2}\left[f^{(1)}(\mu)\right]^{2}\right) \tag{3}
\end{equation*}
$$

Note that (3) can be generalized to random vectors B_{n} with mean vector β, covariance matrix Σ, and gradient vector ∇f :

$$
\sqrt{n}\left(f\left(B_{n}\right)-f(\beta)\right) \rightarrow N\left(0, \nabla f(\beta)^{T} \Sigma \nabla f(\beta)\right) .
$$

Statistical methods in public health
 Population Attributable Fraction

Population Attributable Fraction (PAF)

Cohort study
Levin (1953) was the first to proposed a statistic. A commonly used form is

$$
\begin{array}{r}
\operatorname{PAR}:=\frac{p(\mathrm{RR}-1)}{1+p(\mathrm{RR}-1)}=\frac{1}{1+\frac{1}{p(\mathrm{RR}-1)}} \\
=\frac{1}{1+\frac{R_{0}}{p\left(R_{1}-R_{0}\right)}}=\frac{p\left(R_{1}-R_{0}\right)}{p R_{1}-p R_{0}+R_{0}}=\frac{p\left(R_{1}-R_{0}\right)}{p R_{1}-(1-p) R_{0}} \\
\quad=\frac{\text { Expected decrease in the cases }}{\text { Expected cases }} \tag{4}
\end{array}
$$

by writing $\mathrm{RR}=R_{1} / R_{0}$, the ratio of disease probabilities R_{1} and R_{1} among exposed and unexposed, respectively.
Note the the Ihs of (4) does not depend on the absolute risks R_{0} and R_{1}, only on their ratio, the RR!
RR can be estimated using e.g. Cox's proportional hazards model, and the prevalence p directly from the data.

Population Attributable Fraction (PAF)

Background
The importance of a risk factor in public health can be phrased e.g. "How many disease cases could be avoided if risk factor X had been removed from a population?"

- Two important aspects:

Individual effect How strong is the association of X with the disease?
Prevalence How common X is in the population?
Risk factor with low individual effect but high prevalence can be more important to public health that a rare risk factor with strong individual effect.

- PAF combines both aspects into a single statistic:

Proportion of avoided cases if the individuals with X had been similar to those without X

[^0]
Population Attributable Fraction (PAF)

Cross-sectional study
PAF can also be defined using e.g. logistic regression model for outcome Y_{i}.
Let X_{i} be a vector of m covariates, and X_{i}^{*} a modified version, in which the risk factor of interest has been set to state "unexposed".
Absolute risk R_{i} (and R_{i}^{*}) is based on $X_{i}\left(X_{i}^{*}\right)$ and the regression coefficients β :

$$
\begin{equation*}
R_{i}:=\mathbb{P}\left\{Y_{i}=1 \mid X_{i}, \beta\right\}=\operatorname{expit}\left(X_{i} \beta\right):=\frac{1}{1+\exp \left\{-X_{i} \beta\right\}} \tag{5}
\end{equation*}
$$

Expected proportion of cases is the average of terms (5) called predictive margin ${ }^{1}$:

$$
\mathrm{PM}:=\frac{1}{n} \sum_{i=1}^{n} R_{i} \quad \mathrm{PM}^{*}:=\frac{1}{n} \sum_{i=1}^{n} R_{i}^{*}
$$

PAF is defined as

$$
\mathrm{PAF}:=1-\frac{\mathrm{PM}^{*}}{\mathrm{PM}}
$$

${ }^{1}$ Graubard and Korn (1999), Biometrics

[^0]: Statistical methods in public health
 Population Attributable Fraction

