Contents

Statistical methods in public health
 Confounding and standardization

Tommi Härkänen

National Institute for Health and Welfare (THL)
Department of Health (TERO)

September 22, 2015

$\underset{\text { Statistical methods in public health }}{\substack{ \\\text { Confounding }}}$
 -Confounding

Confounding by age

Unequal age distribution

$$
\mathbb{P}\{\text { Age }<55\}=0.8
$$

$$
\mathbb{P}\{\text { Age }<55\}=0.4
$$

Probability of failure

$$
0.8 \times 0.1+0.2 \times 0.3=0.14 \quad 0.4 \times 0.1+0.6 \times 0.3=0.22
$$

Equal age distribution

$$
\mathbb{P}\{\text { Age }<55\}=0.6
$$

$$
\mathbb{P}\{\text { Age }<55\}=0.6
$$

Probability of failure

$$
0.6 \times 0.1+0.4 \times 0.3=0.18 \quad 0.6 \times 0.1+0.4 \times 0.3=0.18
$$

Confounding

Direct standardization

Cox's proportional hazards model

Statistical methods in public health
 $\left\llcorner_{\text {Confounding }}\right.$

Comparison of groups
Observational vs. randomized studies

- The groups can be different in many respects.
E.g. consider people with basic (group A) or high (university degree, B) education

1. Subjects in group A are on average younger than in B
2. Older subjects generally have more illnesses than young
\Rightarrow Subjects in group B have more illnesses, which may result from differences in age, not from education

- Randomization removes the differences of the distributions of all background factors between A and B,
but education (and many other factors) cannot be randomized
- Confounding effect of age needs to be accounted for using e.g
- experimental design,
- subset analyses or
- adjustment using e.g. regression analyses

Causes

Causality relations are often depicted using graphs. Nodes are connected with arrows, which represent (possible) causality.

Example: What is the association of alcohol consumption and Coronary Heart Disease (CHD)?

$$
\text { Alcohol consumption } \longrightarrow \text { Coronary Heart Disease }
$$

Problem: People who consume large quantities of alcohol tend to be smokers and smoking has direct effect on CHD.

Confounders

Confounders - necessary conditions ${ }^{1}$. The factor must:
C1 be a cause of the disease, or a surrogate measure of a cause, in unexposed people; factors satisfying this condition are called risk factors and
C2 not be an intermediate step in the causal pathway between the exposure and the disease
C3 not be affected by the exposure
Confounders usually need to be adjusted for in statistical analyses.
${ }^{1}$ http://oem.bmj.com/content/60/3/227.full

Statistical methods in public health
 - Confounding

Relationships of variables: Summary

Before building a (regression) model, the relations of different variables must be assessed with care.
Temporality can be of help: cause always precedes effect.

Effects of latent factors are difficult to assess.
Randomization can be the only efficient way to remove the confounding.

Cox's proportional hazards model

Poisson likelihood and baseline hazard
Recall lecture 2: Time-dependent hazard rate λ_{t} and short time bands $h>0$.
In lecture 3λ. was reparameterized as $\lambda_{i}=\exp \left\{X_{i} \beta\right\}$.
Now we reparameterize λ. so that it depends on both individual factors X_{i} and time t :

$$
\begin{equation*}
\lambda_{i t}=\lambda_{0 t} \exp \left\{X_{i} \beta\right\} \tag{1}
\end{equation*}
$$

λ_{0}. is called the baseline hazard
Note that also here $\exp \{\beta\}$ has the interpretation of risk ratio!
The Poisson loglikelihood terms corresponding to (1) are
$\delta_{i t} \log \left(\lambda_{i t}\right)-t_{i t} \lambda_{i t}$ and the Poisson loglikelihood becomes

$$
\begin{equation*}
\ell\left(\lambda_{o \cdot}, \beta ; \Delta, T, X\right)=\sum_{i, t} \delta_{i t} \log \left(\lambda_{i t}\right)-t_{i t} \lambda_{i t} \tag{2}
\end{equation*}
$$

[^0]Risk sets for the observed failures in Cox model

Follow-up data with 10 observations and 4 observed failure times.
At each observed failure time -
denominator of the log likelihood consists of the individuals at risk o.

[^0]: Statistical methods in public health
 Cox's proportional hazards model

