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Assumptions in survival models of week 2 lectures

I One time variable

I All individuals enter the study at time zero (baseline)

I Event of interest can occur only after baseline

Challenges: Last week only a subset of the Framingham data was used in
the excercises. Why?

Young individuals have generally much lower risk of death than old
individuals.
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Time origins and time scales

Some examples:
Time origin Time variable
Birth Age
Onset of exposure Exposure time
Entry to study Follow-up time
Disease onset time Time since disease onset
Diagnosis Time since diagnosis
Start of treatment Time since start of treatment
End of treatment Time since end of treatment

...
...
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Survival data illustrated using di�erent time scales

Four individuals: two observed failures and two right censored.
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Lexis diagram
Two time scales simultaneously
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Data of subject 2 for �ve-year time bands:

Subject 2

Age
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Year
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Multi-state model

A common way to describe di�erent events is by assuming a (small)
number of di�erent states, in one of which an individual i is at time t.

One of the simplest multi-state model is the illness-death model:

Healthy

Diseased

Dead

λ HI

λHD

λ
ID

Modeling: For each transition we (can) have a di�erent model.
After moving to state diseased, the model of death changes.

Risk sets: When an individual is in state healthy, he/she is at risk to
move to state diseased or state dead.
After moving to state diseased, he/she is no longer at risk to move from
state healthy to state dead.
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Proportional hazards model

The hazard rate parameter λi for individual i can be parameterized as

λi = exp
{
Xiβ
}
, (1)

where Xi is a vector of covariate values for individual i and β is a vector
of corresponding regression coe�cients. The inner product Xiβ is called
the linear predictor (LP).

Interpretation of βj (an element of β):

I If the corresponding covariate value in Xi increases by one
(x∗ij := xij + 1), then LP changes by xijβj .

I The hazard rate changes by

λ∗i
λi

=
exp{X ∗

i β}
exp{Xiβ}

= exp{βj}

and exp{βj} is called the risk ratio RR or hazard ratio HR.
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Two categories of censoring

Causes of failure There are other causes of failure than the one we are
interested in. E.g. we are studying death from heart
diseases, but individuals might die from cancer.
The individual is not in the risk set after the time of the
event.

Drop-out from follow-up We are not able to continue the follow-up of
some patients after some point in time. Causes of
drop-out can depend on the risk factors or the outcome, in
which case the estimates can be wrong.
The individuals remain in the risk set after the drop-outs.

Statistical methods in public health

Censoring

Competing risks

Competing risks

If there are more than one event types, and any of them terminates the
follow-up, the event types are competing risks.
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Probabilities p·1 and p·2 are cause-speci�c failure probabilities for causes
F1 and F2, respectively.
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Cause-speci�c hazards
Likelihood

Data: End of follow-up time ti , and a cencoring indicator δi1, δi2, . . . for
each cause of failure.
Parameters: Following the same reparameterization (and two causes) for
pt1 =: λt1h and pt2 =: λt2h (as in lectures 2), we obtain cause-speci�c
hazard rates λt1 and λt2.

Likelihood can be approximated as before:

L(λ; ti , δ) =
(
λt1h

)δi1(
λt2h

)δi2
exp

{
−

ti∑
s=1

λs1h + λs2h

}

=

[(
λt1h

)δi1
exp

{
−

ti∑
s=1

λs1h

}]
︸ ︷︷ ︸

Cause 1

×

[(
λt2h

)δi2
exp

{
−

ti∑
s=1

λs2h

}]
︸ ︷︷ ︸

Cause 2

. (2)

Note that the likelihood factorizes into two parts thus the hazard rate
parameters λ·1 and λ·2 can be estimated separately.
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Independence of causes of death?

Likelihood (2) factorized into two parts, and in probability calculus this
suggests that events are independent.

But

I If the causes of failure are di�erent causes of death,
then death from cancer inhibits death from a heart disease and vice
versa.
Di�erent causes are almost completely dependent (negative
association)!

I Individuals with advanced atherosclerosis have high risk for both
myocardial infarction (MI) and stroke.
If stroke incidence (hazard rate) could be reduced by some
preventive measures, it is likely that the high risk individuals would
face MI a bit later
⇒ Lower stroke incidence but higher MI incidence.
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Cause-speci�c survival probabilities
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It is common to calculate cause-speci�c survival probabilities
Sk(t) := exp{−

∑t
s λsh} for cause k .

Usually Sk(·) is interpreted as �if all other causes could be avoided then
the survival probability at time t is Sk(·)�.
Problem: This interpretation assumes that the causes are independent.
In this case elimination of failure F2 at time t should not alter failure
rates after time t.
The example on MI and stroke above illustrated that elimination of one
cause may well increase incidence later on!
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Assumptions on censoring mechanism
Closed cohort

Some individuals Cannot be followed until the event of interest occurs.
Censoring can be completely random (independent from the analysis
variables).

Problem: A selection mechanism causing the drop-out can depend on
the risk factors.
E.g. individuals with good physical health stay in the follow-up, but
individuals with weaker functional capacity drop out, and part of new
disease cases are unobserved.
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Late entry
Dynamic cohort

There can be an ideal starting point for a follow-up, e.g. onset of a
disease or a treatment.
Sometimes part of the individuals are recruited at a later stage, e.g. all
cancer patients being treated in a hospital at a certain date and new
cases after that date.
Problem: The patients being treated are the survivors. It is possible that
patients with severe symptoms have died away before the starting date.
E.g. the healthy worker e�ect.
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