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Challenges in analyzing time as an outcome

Follow-up time Subjects can have di�erent time lengths until the
outcome of interest occurs

Right-censoring Some subjects do not experience the outcome of interest
before the end of the follow-up. Common reasons are

I follow-up ends at a speci�ed (calendar) time
I follow-up ends due to another reason (e.g. death

instead of cancer diagnosis)
I individual cannot be followed after some time point

(e.g. emigration)

Time-dependent risk Probability that �outcome occurs soon after time t
after the baseline (assuming outcome did not occur before
t)� depends on time t
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Follow-up time

Splitting the follow-up time

Consider a three-year follow-up data, and a split based on one-year
intervals.
Possible outcomes can be

1. Failure during 1st year

2. Failure during 2nd year

3. Failure during 3rd year

4. Survival for the full three-year period

If the failure can occur only once, the failure during 2nd year (choice 2) is
possible only if subject survived 1st year.
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Follow-up time

Conditional and unconditional probability of failure

In the example above, there was a (conditional) binary model for each
follow-up year (until failure):

Pp {T = t | T ≥ t } = p, t = 1, 2, . . .

where T is the year of failure. Let Yt ∈ {S , F} denote the binary
random variable for failure in year t. If T = t, then Y1 = · · · = Yt−1 = 0
and Yt = 1.
Unconditional failure probability is

Pp {T = 1} = Pp {Y1 = 1} = Pp {T = 1 | T ≥ 1} = p
Pp {T = 2} = Pp {Y1 = 0, Y2 = 1}

= Pp {Y2 = 1 | Y1 = 0}Pp {Y1 = 0} = (1− p)p
...

Pp {T = t} = Pp {Y1 = 0, Y2 = 0, . . . , Yt−1 = 0, Yt = 1}
= Pp {Yt = 1 | Y1 = · · · = Yt−1 = 0} × · · ·

× Pp {Y2 = 0 | Y1 = 0}Pp {Y1 = 0}
= (1− p)t−1p

(1)

Terms in (1) are the likelihood terms L(p; t) = Pp {T = t} for subjects
whose failure times t are observed during the follow-up.
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Right-censoring

Survival function and right censoring

Survival function value at time t is the probability of survival longer than
time t :

Sp(t) := Pp {T > t} = 1−Pp {T ≤ t} = 1−
t∑

s=1

Pp {T = t} = (1−p)t .

(2)
Subjects who were right-censored, that is, had not failed before end of
follow-up time, say u > 0, have likelihood terms L(p; u) = Sp(t).

Likelihood for subjects i = 1, 2, . . . , n with observations (ti , δi ) is

L(p; (ti , δi )i ) =
n∏

i=1

pδi
ti−δi∏
s=1

(1− p)

where δi ∈ {0, 1} is the censoring indicator with values

0 Subject i was right-censored at time ti
1 Subject i failed at time ti
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Time-dependent failure probability

Time-dependent failure probability

Failure probability can depend on the time band t:

Ppt {T = t | T ≥ t } = pt , t = 1, 2, . . .

and the unconditional probability (1) becomes

Pp {T = t} =
= Ppt {Yt = 1 | Y1 = · · · = Yt−1 = 0} × · · ·

× Pp2 {Y2 = 1 | Y1 = 0}Pp1 {Y1 = 0}

=
t−1∏
s=1

(1− ps)pt . (3)

The maximum likelihood estimate of failure probability in time band t is

p̂t =
dt
mt
, (4)

where dt =
∑

i 1{Ti = t} is the number of failures and
mt =

∑
i 1{Ti ≥ t} is the size of the risk set in the beginning of time

band t.
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The Kaplan-Meier estimator

The Kaplan-Meier estimator
Nonparametric estimate of survival function

What happens when the time bands become more and more narrow?

I Fewer failures (eventually only one) occur during a single time band

I More time bands contain no failures

Recall the de�nition of survival function (2), and the maximum likelihood
estimate of pt in (4):

S(t) :=
∏
j

1−
dtj
mtj

. (5)

Terms in (5) equal 1 in bands with no failures.
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The Kaplan-Meier estimator

The Kaplan-Meier estimator
Nonparametric estimate of survival function

The KM estimate drops at the failure times.
Step size at time tj is −dtj/mtj

Right-censored failure times do not change the KM estimate.
(Right-censored failure time does in�uence the drop after the censoring
as the size of risk set becomes smaller.)
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The Kaplan-Meier estimator

The Kaplan-Meier estimator
Variance estimator

There are several variance estimators for KM. On of the most popular is
based on Greenwood's formula:

V̂ar
[
Ŝ(t)

]
= Ŝ(t)

2 ∑
i : ti≤t

di
mi (mi − di )

. (6)

(6) is based on

1. log-transformation of Ŝ(t)

traditional Greenwood formula was f (t) = log t
exponential Greenwood formula was f (t) = log(− log t)

2. delta method and

3. martingales (terms in (5) are not independent).
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Hazard rate

Hazard rate

Divide the follow-up time into short bands (as in the Kaplan-Meier
estimator case) of length h (constant).

The shorter time band, the smaller probability of failure p. Assume that
the probability of having two or more failures during one band is (very)
small.

Reparameterize p =: λh, where λ is called the hazard rate or probability
rate or instantaneous probability rate or force of mortality or . . . .
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Hazard rate

Hazard rate
Poisson likelihood

The likelihood terms for binary model and probability rate λ:

L(λ; (ti , δi )i ) =

{
p
∏ti/h−1

s=1 (1− p) = λh
∏ti/h−1

s=1 (1− λh), δi = 1∏ti/h
s=1(1− p) =

∏ti/h
s=1(1− λh), δi = 0

(7)
Recall that for x close to zero 1− x ≈ exp{−x}.
It follows that

∏
s(1− λh) ≈

∏
s exp{−λh} = exp{−

∑
s λh},

and we get the Poisson likelihood:

L(λ; ti , δi ) = (λh)δi exp{−tjλ}. (8)
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Hazard rate

Hazard rate
Maximum likelihood estimate of λ and distribution of failure time

It is easy to see that

λ̂ =

∑n
i=1 δi∑n
i=1 ti

=
Total number of failures

Total observation time
.

Survival function S(·) and density function fλ(·) are

S(t) = exp{−λt}
fλ(t) = λ exp{−λt}.

(9)

Note that (9) correspond to exponential distribution with
expectation 1/λ and variance 1/λ2.
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Hazard rate

Hazard rate
Time-dependent hazard rate

It may be unrealistic to assume that the hazard rate is constant over a
(long) period of time.
A solution: Divide the follow-up time into time bands (uk , uk+1] within
which the hazard rate λk is constant.
E.g. follow-up time 15 years are divided into 5-year bands:
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