Contents

Statistical methods in public health

Analyzing time to event

Tommi Härkänen

National Institute for Health and Welfare (THL)
Department of Health (TERO)

September 8, 2015

Statistical methods in public health

Challenges in analyzing time as an outcome

Follow-up time Subjects can have different time lengths until the outcome of interest occurs
Right-censoring Some subjects do not experience the outcome of interest before the end of the follow-up. Common reasons are

- follow-up ends at a specified (calendar) time
- follow-up ends due to another reason (e.g. death instead of cancer diagnosis)
- individual cannot be followed after some time point (e.g. emigration)

Time-dependent risk Probability that "outcome occurs soon after time t after the baseline (assuming outcome did not occur before t)" depends on time t

Follow-up time

Right-censoring

Time-dependent failure probability

The Kaplan-Meier estimator

Hazard rate

Statistical methods in public health \llcorner Follow-up time
 $\left\llcorner_{\text {Follow-up time }}\right.$

Splitting the follow-up time
Consider a three-year follow-up data, and a split based on one-year intervals.
Possible outcomes can be

1. Failure during 1st year
2. Failure during 2nd year
3. Failure during 3rd year
4. Survival for the full three-year period

If the failure can occur only once, the failure during 2 nd year (choice 2) is possible only if subject survived 1st year.

Conditional and unconditional probability of failure

In the example above, there was a (conditional) binary model for each follow-up year (until failure):

$$
\mathbb{P}_{p}\{T=t \mid T \geq t\}=p, t=1,2, \ldots
$$

where T is the year of failure. Let $Y_{t} \in\{S, F\}$ denote the binary
random variable for failure in year t. If $T=t$, then $Y_{1}=\cdots=Y_{t-1}=0$ and $Y_{t}=1$.
Unconditional failure probability is

$$
\begin{align*}
\mathbb{P}_{p}\{T=1\}= & \mathbb{P}_{p}\left\{Y_{1}=1\right\}=\mathbb{P}_{p}\{T=1 \mid T \geq 1\}=p \\
\mathbb{P}_{p}\{T=2\}= & \mathbb{P}_{p}\left\{Y_{1}=0, Y_{2}=1\right\} \\
= & \mathbb{P}_{p}\left\{Y_{2}=1 \mid Y_{1}=0\right\} \mathbb{P}_{p}\left\{Y_{1}=0\right\}=(1-p) p \\
\vdots & \tag{1}\\
\mathbb{P}_{p}\{T=t\}= & \mathbb{P}_{p}\left\{Y_{1}=0, Y_{2}=0, \ldots, Y_{t-1}=0, Y_{t}=1\right\} \\
= & \mathbb{P}_{p}\left\{Y_{t}=1 \mid Y_{1}=\cdots=Y_{t-1}=0\right\} \times \cdots \\
& \times \mathbb{P}_{p}\left\{Y_{2}=0 \mid Y_{1}=0\right\} \mathbb{P}_{p}\left\{Y_{1}=0\right\} \\
= & (1-p)^{t-1} p
\end{align*}
$$

Terms in (1) are the likelihood terms $L(p ; t)=\mathbb{P}_{p}\{T=t\}$ for subjects whose failure times t are observed during the follow-up.

[^0]
Time-dependent failure probability

Failure probability can depend on the time band t

$$
\mathbb{P}_{p_{t}}\{T=t \mid T \geq t\}=p_{t}, t=1,2, \ldots
$$

and the unconditional probability (1) becomes

$$
\left.\left.\begin{array}{rl}
\mathbb{P}_{p}\{T=t\}= & \\
= & \mathbb{P}_{p_{t}}\left\{Y_{t}=1 \mid Y_{1}=\cdots=Y_{t-1}=0\right\} \times \cdots \\
& \times \mathbb{P}_{p_{2}}\left\{Y_{2}=1 \mid Y_{1}=0\right\} \mathbb{P}_{p_{1}}\{
\end{array} Y_{1}=0\right\}\right\}
$$

The maximum likelihood estimate of failure probability in time band t is

$$
\begin{equation*}
\hat{p}_{t}=\frac{d_{t}}{m_{t}} \tag{4}
\end{equation*}
$$

where $d_{t}=\sum_{i} \mathbf{1}\left\{T_{i}=t\right\}$ is the number of failures and
$m_{t}=\sum_{i} \mathbf{1}\left\{T_{i} \geq t\right\}$ is the size of the risk set in the beginning of time band t.

Survival function and right censoring

Survival function value at time t is the probability of survival longer than time t :

$$
\begin{equation*}
S_{p}(t):=\mathbb{P}_{p}\{T>t\}=1-\mathbb{P}_{p}\{T \leq t\}=1-\sum_{s=1}^{t} \mathbb{P}_{p}\{T=t\}=(1-p)^{t} \tag{2}
\end{equation*}
$$

Subjects who were right-censored, that is, had not failed before end of follow-up time, say $u>0$, have likelihood terms $L(p ; u)=S_{p}(t)$.

Likelihood for subjects $i=1,2, \ldots, n$ with observations $\left(t_{i}, \delta_{i}\right)$ is

$$
L\left(p ;\left(t_{i}, \delta_{i}\right)_{i}\right)=\prod_{i=1}^{n} p^{\delta_{i}} \prod_{s=1}^{t_{i}-\delta_{i}}(1-p)
$$

where $\delta_{i} \in\{0,1\}$ is the censoring indicator with values
0 Subject i was right-censored at time t_{i}
1 Subject i failed at time t_{i}

Statistical methods in public health
 The Kaplan-Meier estimator

The Kaplan-Meier estimator
Nonparametric estimate of survival function
What happens when the time bands become more and more narrow?

- Fewer failures (eventually only one) occur during a single time band
- More time bands contain no failures

Recall the definition of survival function (2), and the maximum likelihood estimate of p_{t} in (4):

$$
\begin{equation*}
S(t):=\prod_{j} 1-\frac{d_{t_{j}}}{m_{t_{j}}} \tag{5}
\end{equation*}
$$

Terms in (5) equal 1 in bands with no failures.

The Kaplan-Meier estimator

Nonparametric estimate of survival function
The KM estimate drops at the failure times.
Step size at time t_{j} is $-d_{t_{j}} / m_{t_{j}}$
Right-censored failure times do not change the KM estimate.
(Right-censored failure time does influence the drop after the censoring as the size of risk set becomes smaller.)

Statistical methods in public health $\left\llcorner_{\text {Hazard rate }}\right.$

Hazard rate

Divide the follow-up time into short bands (as in the Kaplan-Meier estimator case) of length h (constant).

The shorter time band, the smaller probability of failure p. Assume that the probability of having two or more failures during one band is (very) small.

Reparameterize $p=: \lambda h$, where λ is called the hazard rate or probability rate or instantaneous probability rate or force of mortality or

The Kaplan-Meier estimator

Variance estimator

There are several variance estimators for KM. On of the most popular is based on Greenwood's formula:

$$
\begin{equation*}
\widehat{\operatorname{Var}}[\widehat{S(t)}]=\widehat{S(t)}^{2} \sum_{i: t_{i} \leq t} \frac{d_{i}}{m_{i}\left(m_{i}-d_{i}\right)} \tag{6}
\end{equation*}
$$

(6) is based on

1. log-transformation of $\widehat{S(t)}$
traditional Greenwood formula was $f(t)=\log t$ exponential Greenwood formula was $f(t)=\log (-\log t)$
2. delta method and
3. martingales (terms in (5) are not independent)

Statistical methods in public health
 $\left\llcorner_{\text {Hazard rate }}\right.$

Hazard rate

Poisson likelihood
The likelihood terms for binary model and probability rate λ :
$L\left(\lambda ;\left(t_{i}, \delta_{i}\right)_{i}\right)=\left\{\begin{aligned} p \prod_{s=1}^{t_{i} / h-1}(1-p) & =\lambda h \prod_{s=1}^{t_{i} / h-1}(1-\lambda h), & & \delta_{i}=1 \\ \prod_{s=1}^{t_{i} / h}(1-p) & =\prod_{s=1}^{t_{i} / h}(1-\lambda h), & & \delta_{i}=0\end{aligned}\right.$
Recall that for x close to zero $1-x \approx \exp \{-x\}$.
It follows that $\prod_{s}(1-\lambda h) \approx \prod_{s} \exp \{-\lambda h\}=\exp \left\{-\sum_{s} \lambda h\right\}$, and we get the Poisson likelihood:

$$
\begin{equation*}
L\left(\lambda ; t_{i}, \delta_{i}\right)=(\lambda h)^{\delta_{i}} \exp \left\{-t_{j} \lambda\right\} \tag{8}
\end{equation*}
$$

Hazard rate

Maximum likelihood estimate of λ and distribution of failure time
It is easy to see that

$$
\hat{\lambda}=\frac{\sum_{i=1}^{n} \delta_{i}}{\sum_{i=1}^{n} t_{i}}=\frac{\text { Total number of failures }}{\text { Total observation time }} .
$$

Survival function $S(\cdot)$ and density function $f_{\lambda}(\cdot)$ are

$$
\begin{align*}
S(t) & =\exp \{-\lambda t\} \\
f_{\lambda}(t) & =\lambda \exp \{-\lambda t\} . \tag{9}
\end{align*}
$$

Note that (9) correspond to exponential distribution with expectation $1 / \lambda$ and variance $1 / \lambda^{2}$

Hazard rate

Time-dependent hazard rate
It may be unrealistic to assume that the hazard rate is constant over a (long) period of time
A solution: Divide the follow-up time into time bands (u_{k}, u_{k+1}] within which the hazard rate λ_{k} is constant.
E.g. follow-up time 15 years are divided into 5 -year bands:

	Band 1	Band 2	Band 3
Subject 3			
	5	4	
Subject 2			
	5	5	2
Subject 1	1	0	1
λ_{k}	$\overline{13}$	9	2

[^0]: Statistical methods in public health
 $\left\llcorner_{\text {Time-dependent failure probability }}\right.$

