Matematiikan ja tilastotieteen laitos

Reaalianalyysi II
Harjoitus 9
26.11.2015

In the first three exercises $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function. Continuity is not always necessary, but it helps in some details.

Recall that f is of bounded variation if

$$
V_{f}([0,1]):=\sup \left\{\sum_{i=1}^{k} \mid f\left(x_{i+1}-f\left(x_{i}\right) \mid: 0=x_{1}<x_{2}<\cdots<x_{k+1}=1\right\}<\infty .\right.
$$

Recall also that f is of bounded variation if and only if it is a difference of two increasing functions.

1. Show that if f is of bounded variation, then there is a signed measure $\mu_{f}: \operatorname{Bor}([0,1]) \rightarrow[0, \infty)$ such that

$$
\mu_{f}([a, b])=f(b)-f(a) \text { for all } 0 \leq a \leq b \leq 1
$$

2. Show that if f is the Cantor function (Devil's staircase), then μ_{f} and Lebesgue measure are mutually singular.
3. Show that if $\mu: \operatorname{Bor}([0,1]) \rightarrow \mathbb{R}$ is a signed measure, then $f: x \mapsto$ $\mu([0, x]), x \in[0,1]$, is of bounded variation and $V_{f}([0,1])=V(\mu,[0,1])$.
4. Let $\emptyset \neq A \subset X,(X, d)$ is a metric space. Show that $x \mapsto d(x, A)$ is a Lipschitz function.
5. Let $f: A \rightarrow \mathbb{R}$ be Lipschitz, where $A \subset X$. Define $g: X \rightarrow \mathbb{R}$,

$$
g(x)=\inf \{f(y)+\operatorname{Lip}(f) d(x, y): y \in A\}, x \in X
$$

Show that g is Lipschitz, $\operatorname{Lip}(g)=\operatorname{Lip}(f)$ and $g(x)=f(x)$, when $x \in A$.
6. Let $C \subset[0,1]$ be the Cantor $1 / 3$ set. Construct a Lipschitz function $f: \mathbb{R} \rightarrow \mathbb{R}$, which is not differentiable at any point of C.

