Matematiikan ja tilastotieteen laitos Reaalianalyysi II Harjoitus 8 19.11.2015

In the following $\mu : \mathcal{M} \to \mathbb{R} \cup \{-\infty, \infty\}$ is a signed measure, where \mathcal{M} is a σ -algebra in a set X.

1. Show that if $A, B \in \mathcal{M}, A \subset B$ and $\mu(A) = \infty$, then $\mu(B) = \infty$.

2. Show that the measures μ^+ and μ^- in the Jordan decomposition are unique.

3. Show that if $\nu : \mathcal{M} \to [0, \infty]$ is a measure, then $\mu \ll \nu$, if and only if $V(\mu, .) \ll \nu$.

In the following $\mu : \mathcal{M} \to [0, \infty]$ is a measure. The set $A \in \mathcal{M}$ is an atom of μ if $\mu(A) > 0$ and for all $B \in \mathcal{M}, B \subset A$, either $\mu(B) = \mu(A)$ or $\mu(B) = 0$.

4. What are the atoms of the Lebesgue measure and the counting measure?

5. Show that the atoms of every Radon measure μ in \mathbb{R}^n are almost singletons, that is, for every atom A of μ there is $a \in A$ such that $\mu(A \setminus \{a\}) = 0$.

6. Show that if μ has no atoms and $0 < t < \mu(X) < \infty$, then there is $A \in \mathcal{M}$ such that $\mu(A) = t$.