Matematiikan ja tilastotieteen laitos Reaalianalyysi II Harjoitus 6 5.11.2015

In the following $\mathcal{D}_k, k \in \mathbb{Z}$, is the family dyadic cubes in \mathbb{R}^n , whose sidelength is 2^{-k} and $\mathcal{D} = \bigcup_{k \in \mathbb{Z}} \mathcal{D}_k$ and μ is a Radon measure in \mathbb{R}^n . So $Q \in \mathcal{D}_k$ if for some $j_i \in \mathbb{Z}, i = 1, \ldots, n$,

$$Q = \{ x \in \mathbb{R}^n : (j_i - 1)2^{-k} \le x_i < j_i 2^{-k}, i = 1, \dots, n \}.$$

1. Prove the dyadic Vitali's covering theorem: Let $A \subset \mathbb{R}^n$ be bounded and $\mathcal{V} \subset \mathcal{D}$ such that every point of A belongs to an arbitrarily small cube of \mathcal{V} . If $\epsilon > 0$, there are disjoint cubes $Q_1, Q_2, \dots \in \mathcal{V}$ for which

$$A \subset \bigcup_{i} Q_i$$
 ja $\sum_{i} \mu(Q_i) \leq \mu(A) + \epsilon.$

2. Prove the dyadic density theorem: if $A \subset \mathbb{R}^n$, then

$$\lim_{k \to \infty} \frac{\mu(A \cap Q_k(x))}{\mu(Q_k(x))} = 1$$

for μ almost all $x \in A$, where $Q_k(x)$ is that cube of \mathcal{D}_k which contains x.

3. What are the smallest numbers P(1) and Q(1) for which Besicovitch's covering theorem holds in \mathbb{R} ?

4. Show that the smallest numbers P(n) and Q(n) for which Besicovitch's covering theorem holds in \mathbb{R}^n tend to ∞ as n tends to ∞ .

5. Show that Besicovitch's covering theorem does not hold in any infinitedimensional inner product space.

6. A metric space X is finite-dimensional if there exists $N \in \mathbb{N}$ such that for all $x \in X$ and r > 0 there are $x_1, \ldots, x_N \in X$ for which

$$B(x,2r) \subset \bigcup_{i=1}^{N} B(x_i,r).$$

Show that if there is a doubling Borel measure μ in X, then X is finitedimensional. A measure μ is doubling if there is $C < \infty$ such that $0 < \mu(B(x,2r)) \le C\mu(B(x,r)) < \infty$ for all $x \in X$ an r > 0.