
Real Analysis II
9. exercise set, solutions

1. As f is of bounded variation it can be written as a difference of two increasing functions;
f = g − h. We prove first that there is a Radon measure µg: Bor([0, 1]) −→ [0,∞[ s.t.

µg([a, b]) = g(b)− g(a) for all closed intervals [a, b] ⊂ [0, 1]. (1)

An obvious candidate for this measure is µg(A) = m1(g(A)), where m1 the Lebesgue measure
in R, for all A ∈ Bor([0, 1]) but this definition leads to problems as g is not necessarily strictly
increasing. Instead let g̃(x) = g(x) + x for all x ∈ R. Now g̃ is strictly increasing and we
define µg̃(A) = m1(g̃(A)) for all A ∈ Bor([0, 1]). Now for all closed intervals [a, b] ⊂ [0, 1] we
have

µg̃([a, b]) = g(b)− g(a) + b− a.

Thus by setting µg = µg̃ − m1 we get the measure with property (1). Similarly we find a
Radon measure µh([a, b]) = h(b)− h(a) for all closed intervals [a, b] ⊂ [0, 1].

Now define µf = µg − µh. This is clearly a signed measure and for all closed intervals
[a, b] ⊂ [0, 1] we have

µf ([a, b]) = (µg − µh)([a, b]) = [g(b)− h(b)]− [g(a)− h(a)] = f(b)− f(a),

as desired. �

2. We need to find a measurable set C s.t m2(C) = 0 = µf ([0, 1] \ C). Take C to be the
standard Cantor set. It is well-known that m2 (C) = 0 (see e.g. Holopainen’s lecture notes
Reaalianalyysi I) so it is enough to show that µf ([0, 1] \ C) = 0. But it is also well-known
that [0, 1] \C is a countable union of intervals and furthermore f is constant in each of these
intervals. Consider any such interval J . Then µf (J) = sup[f(b)−f(a) : [a, b] ⊂ J ] = 0 which
shows that µf ([0, 1] \ C) = 0 which finishes the proof. �

3. As µ is a signed measure it has a Jordan decomposition µ = µ+ − µ−, where µ+ and µ−
are finite measures. Because of this, the functions g(x) = µ+([0, x]) and h(x) = µ−([0, x]) are
increasing. Now f = g − h. By the remark in the exercise sheet f is of bounded variation.

We also have

Vf ([0, 1]) = sup
0≤a1<b1<a2<b2<···<ak<bk≤1

∑
|f(ai)− f(bi)|

= sup sup
0≤a1<b1<a2<b2<···<ak<bk≤1

∑
|µ([ai, bi]| ≤ Vf (µ, [0, 1]).

To prove the opposite inequality, let Ai ⊂ [0, 1], i = 1, . . . ,m, be disjoint Borel sets. We need
to show that

m∑
i=1

|µ(Ai)| ≤ Vf ([0, 1]).

Let ε > 0. Applying the approximation theorem for measures to µ+ and µ− we first find
compact sets Ki ⊂ Ai such that

m∑
i=1

|µ(Ai)| ≤
m∑
i=1

|µ(Ki)|+ ε.

Then we find disjoint open sets Ui, i = 1, . . . ,m, with Ki ⊂ Ui and
m∑
i=1

|µ(Ki)| ≤
m∑
i=1

|µ(Ui)|+ ε.
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Each Ui is a disjoint union of open intervals and by the compactness of Ki we can choose Ui

so that it is a disjoint union of finitely many open intervals (ai,j , bi,j), j = 1, . . . ,mi. Then
|µ((ai,j , bi,j))| = |f(ai,j)− f(bi,j)| and we obtain

m∑
i=1

|µ(Ai)| ≤
m∑
i=1

|µ(Ki)|+ ε ≤
m∑
i=1

|µ(Ui)|+ 2ε

=

m∑
i=1

|
mi∑
j=1

µ((ai,j , bi,j))|+ 2ε ≤
m∑
i=1

mi∑
j=1

|µ((ai,j , bi,j))|+ 2ε

=

m∑
i=1

mi∑
j=1

|f(ai,j)− f(bi,j)|+ 2ε ≤ Vf ([0, 1]) + 2ε.

So Vf (µ, [0, 1]) ≤ Vf ([0, 1]). �

4. Let x, y ∈ X. We have three cases to consider.
1◦) Assume that x ∈ A. Then we have

|d(x,A)− d(y,A)| = d(y,A) = inf
z∈A

d(y, z) ≤ d(x,A).

2◦) The case y ∈ A is analogous to case 1◦).
3◦) Assume that x, y 6∈ A. By symmetry we can assume that d(x,A) ≥ d(y,A). Then we

have

|d(x,A)− d(y,A)| = d(x,A)− d(y,A) = inf
z∈A

d(x, z)− inf
z∈A

d(y, z) ≤ d(x, y)

by simply applying triangle inequality.
Therefore |d(x,A)− d(y,A)| ≤ d(x, y) for all x, y ∈ X so x 7→ d(x,A) is 1-Lipschitz. �

5. It follows easily from the Lipschitz-property of f that f(x), g(x) are finite for every
x ∈ X. To see that g is Lip(f)-Lipschitz, let if x1, x2 ∈ X and ε > 0. Choose y ∈ X such
that f(y) + Lip(f)d(y, x1) ≤ g(x1) + ε. Then

g(x2)− g(x1) ≤ f(y) + Lip(f)d(y, x2)− (f(y) + Lip(f)d(y, x1)− ε) ≤ Lip(f)d(x1, x2) + ε.

by the triangle inequality. This proves the first two claims.
If x ∈ A we have

f(x)− Lip(f)d(x, x) = f(x) ≤ f(y) + Lip(f)d(x, y)

for every y ∈ A by using the fact that f is Lip(f)-Lipschitz. This gives f = g in A. �

6. Define f(x) = d(x,C). Then f is Lipschitz by exercise 4. Let x ∈ C. For every k = 1, 2, . . .
there is a unique closed interval Ik of length 3−k such that x ∈ Ik and there is an open interval
Jk of length 3−k such that Ik and Jk have a common end-point xk ∈ C and C ∩ Jk = ∅.
Let yk be the mid-point of Jk. Then f(x) = f(xk) = 0 and f(yk) = 3−k/2 ≥ |x − yk|/3.
Then both xk and yk tend to x, as k → ∞, and it follows that the difference quotient
(f(y)− f(x))/(y − x) cannot have a limit as y → x.
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