Real Analysis II

9. exercise set, solutions

1. As f is of bounded variation it can be written as a difference of two increasing functions; $f=g-h$. We prove first that there is a Radon measure $\mu_{g}: \operatorname{Bor}([0,1]) \longrightarrow[0, \infty[$ s.t.

$$
\begin{equation*}
\mu_{g}([a, b])=g(b)-g(a) \quad \text { for all closed intervals } \quad[a, b] \subset[0,1] . \tag{1}
\end{equation*}
$$

An obvious candidate for this measure is $\mu_{g}(A)=m_{1}(g(A))$, where m_{1} the Lebesgue measure in \mathbb{R}, for all $A \in \operatorname{Bor}([0,1])$ but this definition leads to problems as g is not necessarily strictly increasing. Instead let $\widetilde{g}(x)=g(x)+x$ for all $x \in \mathbb{R}$. Now \widetilde{g} is strictly increasing and we define $\mu_{\widetilde{g}}(A)=m_{1}(\widetilde{g}(A))$ for all $A \in \operatorname{Bor}([0,1])$. Now for all closed intervals $[a, b] \subset[0,1]$ we have

$$
\mu_{\widetilde{g}}([a, b])=g(b)-g(a)+b-a .
$$

Thus by setting $\mu_{g}=\mu_{\widetilde{g}}-m_{1}$ we get the measure with property (1). Similarly we find a Radon measure $\mu_{h}([a, b])=h(b)-h(a)$ for all closed intervals $[a, b] \subset[0,1]$.

Now define $\mu_{f}=\mu_{g}-\mu_{h}$. This is clearly a signed measure and for all closed intervals $[a, b] \subset[0,1]$ we have

$$
\mu_{f}([a, b])=\left(\mu_{g}-\mu_{h}\right)([a, b])=[g(b)-h(b)]-[g(a)-h(a)]=f(b)-f(a),
$$

as desired.
2. We need to find a measurable set C s.t $m_{2}(C)=0=\mu_{f}([0,1] \backslash C)$. Take C to be the standard Cantor set. It is well-known that $m_{2}(C)=0$ (see e.g. Holopainen's lecture notes Reaalianalyysi I) so it is enough to show that $\mu_{f}([0,1] \backslash C)=0$. But it is also well-known that $[0,1] \backslash C$ is a countable union of intervals and furthermore f is constant in each of these intervals. Consider any such interval J. Then $\mu_{f}(J)=\sup [f(b)-f(a):[a, b] \subset J]=0$ which shows that $\mu_{f}([0,1] \backslash C)=0$ which finishes the proof.
3. As μ is a signed measure it has a Jordan decomposition $\mu=\mu^{+}-\mu^{-}$, where μ^{+}and μ^{-} are finite measures. Because of this, the functions $g(x)=\mu^{+}([0, x])$ and $h(x)=\mu^{-}([0, x])$ are increasing. Now $f=g-h$. By the remark in the exercise sheet f is of bounded variation.

We also have

$$
\begin{aligned}
V_{f}([0,1]) & =\sup _{0 \leq a_{1}<b_{1}<a_{2}<b_{2}<\cdots<a_{k}<b_{k} \leq 1} \sum\left|f\left(a_{i}\right)-f\left(b_{i}\right)\right| \\
& =\sup _{0 \leq a_{1}<b_{1}<a_{2}<b_{2}<\cdots<a_{k}<b_{k} \leq 1} \sum \mid \mu\left(\left[a_{i}, b_{i}\right] \mid \leq V_{f}(\mu,[0,1]) .\right.
\end{aligned}
$$

To prove the opposite inequality, let $A_{i} \subset[0,1], i=1, \ldots, m$, be disjoint Borel sets. We need to show that

$$
\sum_{i=1}^{m}\left|\mu\left(A_{i}\right)\right| \leq V_{f}([0,1]) .
$$

Let $\epsilon>0$. Applying the approximation theorem for measures to μ^{+}and μ^{-}we first find compact sets $K_{i} \subset A_{i}$ such that

$$
\sum_{i=1}^{m}\left|\mu\left(A_{i}\right)\right| \leq \sum_{i=1}^{m}\left|\mu\left(K_{i}\right)\right|+\epsilon .
$$

Then we find disjoint open sets $U_{i}, i=1, \ldots, m$, with $K_{i} \subset U_{i}$ and

$$
\sum_{i=1}^{m}\left|\mu\left(K_{i}\right)\right| \leq \sum_{i=1}^{m}\left|\mu\left(U_{i}\right)\right|+\epsilon
$$

Each U_{i} is a disjoint union of open intervals and by the compactness of K_{i} we can choose U_{i} so that it is a disjoint union of finitely many open intervals $\left(a_{i, j}, b_{i, j}\right), j=1, \ldots, m_{i}$. Then $\left|\mu\left(\left(a_{i, j}, b_{i, j}\right)\right)\right|=\left|f\left(a_{i, j}\right)-f\left(b_{i, j}\right)\right|$ and we obtain

$$
\begin{aligned}
& \sum_{i=1}^{m}\left|\mu\left(A_{i}\right)\right| \leq \sum_{i=1}^{m}\left|\mu\left(K_{i}\right)\right|+\epsilon \leq \sum_{i=1}^{m}\left|\mu\left(U_{i}\right)\right|+2 \epsilon \\
& =\sum_{i=1}^{m}\left|\sum_{j=1}^{m_{i}} \mu\left(\left(a_{i, j}, b_{i, j}\right)\right)\right|+2 \epsilon \leq \sum_{i=1}^{m} \sum_{j=1}^{m_{i}}\left|\mu\left(\left(a_{i, j}, b_{i, j}\right)\right)\right|+2 \epsilon \\
& =\sum_{i=1}^{m} \sum_{j=1}^{m_{i}}\left|f\left(a_{i, j}\right)-f\left(b_{i, j}\right)\right|+2 \epsilon \leq V_{f}([0,1])+2 \epsilon .
\end{aligned}
$$

So $V_{f}(\mu,[0,1]) \leq V_{f}([0,1])$.
4. Let $x, y \in X$. We have three cases to consider.
1°) Assume that $x \in A$. Then we have

$$
|d(x, A)-d(y, A)|=d(y, A)=\inf _{z \in A} d(y, z) \leq d(x, A)
$$

2°) The case $y \in A$ is analogous to case 1°).
3°) Assume that $x, y \notin A$. By symmetry we can assume that $d(x, A) \geq d(y, A)$. Then we have

$$
|d(x, A)-d(y, A)|=d(x, A)-d(y, A)=\inf _{z \in A} d(x, z)-\inf _{z \in A} d(y, z) \leq d(x, y)
$$

by simply applying triangle inequality.
Therefore $|d(x, A)-d(y, A)| \leq d(x, y)$ for all $x, y \in X$ so $x \mapsto d(x, A)$ is 1-Lipschitz.
5. It follows easily from the Lipschitz-property of f that $f(x), g(x)$ are finite for every $x \in X$. To see that g is $\operatorname{Lip}(f)$-Lipschitz, let if $x_{1}, x_{2} \in X$ and $\epsilon>0$. Choose $y \in X$ such that $f(y)+\operatorname{Lip}(f) d\left(y, x_{1}\right) \leq g\left(x_{1}\right)+\epsilon$. Then

$$
g\left(x_{2}\right)-g\left(x_{1}\right) \leq f(y)+\operatorname{Lip}(f) d\left(y, x_{2}\right)-\left(f(y)+\operatorname{Lip}(f) d\left(y, x_{1}\right)-\epsilon\right) \leq \operatorname{Lip}(f) d\left(x_{1}, x_{2}\right)+\epsilon
$$

by the triangle inequality. This proves the first two claims.
If $x \in A$ we have

$$
f(x)-\operatorname{Lip}(f) d(x, x)=f(x) \leq f(y)+\operatorname{Lip}(f) d(x, y)
$$

for every $y \in A$ by using the fact that f is $\operatorname{Lip}(f)$-Lipschitz. This gives $f=g$ in A.
6. Define $f(x)=d(x, C)$. Then f is Lipschitz by exercise 4 . Let $x \in C$. For every $k=1,2, \ldots$ there is a unique closed interval I_{k} of length 3^{-k} such that $x \in I_{k}$ and there is an open interval J_{k} of length 3^{-k} such that I_{k} and J_{k} have a common end-point $x_{k} \in C$ and $C \cap J_{k}=\emptyset$. Let y_{k} be the mid-point of J_{k}. Then $f(x)=f\left(x_{k}\right)=0$ and $f\left(y_{k}\right)=3^{-k} / 2 \geq\left|x-y_{k}\right| / 3$. Then both x_{k} and y_{k} tend to x, as $k \rightarrow \infty$, and it follows that the difference quotient $(f(y)-f(x)) /(y-x)$ cannot have a limit as $y \rightarrow x$.

