
Real Analysis II
8. exercise set, solutions

1. Since µ is a signed measure we have µ(A) + µ(B \ A) = µ(B). If µ(B \ A) = −∞ then
the left-hand side is not well defined. Thus µ(B \A) 6= −∞ which immediately implies that
µ(B) =∞ as µ(A) =∞. �

2. Let µ = µ+ − µ− = σ+ − σ− be two Jordan decompositions of µ. Then µ+ and µ− are
mutually singular as are σ+ and σ−. Therefore we find sets A and B s.t.

µ+(A) = µ−(X \A) = 0 and σ+(B) = σ−(X \B) = 0.

ThenX\A is a positive set and B a negative set for µ. Hence for every E ∈M, µ((E\A)∩B)
is both non-negative and non-positive, whence it is zero. Similarly µ((E \B)∩A) = 0. This
implies that µ(E \A) = µ(E \B).

Now, for every E ∈M, we calculate

µ+(E) = µ+(E \A) + µ+(A)

= µ+(E \A)
= µ(E \A) + µ−(E \A)
= µ(E \A)
= µ(E \B)

= µ(E \B) + σ−(E \B)

= σ+(E \B)

= σ+(E \B) + σ+(B)

= σ+(E).

Thus µ+ = σ+. Similarly one proves that µ− = σ−. Therefore the Jordan decomposition is
unique. �

3. Assume that µ� ν. Let A ∈ M be s.t. ν(A) = 0. Then by assumption µ(A) = 0. Then
µ(B) = 0 for all B ⊂ A. But then V (µ,A) = 0 so V (µ, ·)� ν.

For the other direction assume that V (µ, ·) � ν. Let ν(A) = 0 for some A ∈ M . Then
|µ(A)| ≤ V (µ,A) = 0, which proves the claim. �

4. Let mn be the Lebesgue measure. This measure has no atoms. Suppose otherwise and
let A its atom. Then by problem 5. there exists a ∈ A s.t. mn(A \ {a}) = 0. But then
mn(A) = mn(A \ {a}) +mn({a}) = 0 + 0 = 0 which is not possible as A is an atom of mn.

Let A be an atom of the counting measure. Clearly #A = 1, as if #A ≥ 2 then A contains
a singleton which has measure one. On the other hand, singletons are atoms because only
subset they contain is the empty set which has measure zero.

5. Let split Rn into dyadic intervals. For k ∈ Z let Dk be the collection of dyadic cubes with
sidelength 2−k. Then we can split the measure as

µ(A) =
∑

Q∈Dk

µ(A ∩Q)

for all atoms A. Since A is an atom we find for all k an unique cube Qk ∈ Dk s.t.
µ(A) = µ(A ∩Qk). As Rn is complete A ∩Qk converges to some point a ∈ Rn as k −→ ∞.
But then using the convergence of measures we have also µ(A∩Qk) −→ µ({a}) as k −→∞.
As µ(A∩Qk) = µ(A) for all k ∈ N it follows that µ(A) = µ({a}) i.e. µ(A\{a}) = 0 (because
µ(A) <∞) as desired. �
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6. Since µ has no atoms, for every F ∈M with µ(F ) > 0 there is E ∈M, E ⊂ F , such that
0 < µ(E) < µ(F ). Then either 0 < µ(E) ≤ µ(F )/2 or 0 < µ(F \E) ≤ µ(F )/2. Thus we find
E1 ∈ M such that 0 < µ(E1) ≤ µ(F )/2. By the same argument there is E2 ∈ M, E2 ⊂ E1,
such that 0 < µ(E2) ≤ µ(E1)/2. It follows that we can find sets E ∈ M, E ⊂ F, with
arbitrarily small positive measure. In particular, there is A1 ∈M such that 0 < µ(A1) ≤ t.

Suppose we have chosen A1 ⊂ A2 ⊂ . . . Ak such that 0 < µ(Aj) ≤ t. Set

sk = sup{µ(B) : B ∈M, µ(B) ≤ t, Ak ⊂ B}.

Choose Ak+1 ∈ M such that sk − 1/k < µ(Ak+1) ≤ t and Ak ⊂ Ak+1. Let A = ∪∞k=1Ak.
Then µ(A) = limk→∞ µ(Ak) ≤ t. Let B ∈ M, µ(B) ≤ t, A ⊂ B. Since for all k, Ak ⊂ B,
we have by the definition of sk, µ(B) ≤ sk ≤ µ(Ak+1) + 1/k ≤ µ(B) + 1/k, which implies
µ(B) = µ(A).

So we have shown that if B ∈ M, µ(B) ≤ t and A ⊂ B, then µ(B) = µ(A). This implies
that µ(A) = t, since if we had µ(A) < t, we could choose E ⊂ X \A with 0 < µ(E) < t−µ(A)
and then B = A ∪ E would contradict the above statement.
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