Real Analysis II

8. exercise set, solutions

1. Since μ is a signed measure we have $\mu(A)+\mu(B \backslash A)=\mu(B)$. If $\mu(B \backslash A)=-\infty$ then the left-hand side is not well defined. Thus $\mu(B \backslash A) \neq-\infty$ which immediately implies that $\mu(B)=\infty$ as $\mu(A)=\infty$.
2. Let $\mu=\mu^{+}-\mu^{-}=\sigma^{+}-\sigma^{-}$be two Jordan decompositions of μ. Then μ^{+}and μ^{-}are mutually singular as are σ^{+}and σ^{-}. Therefore we find sets A and B s.t.

$$
\mu^{+}(A)=\mu^{-}(X \backslash A)=0 \quad \text { and } \quad \sigma^{+}(B)=\sigma^{-}(X \backslash B)=0 .
$$

Then $X \backslash A$ is a positive set and B a negative set for μ. Hence for every $E \in \mathcal{M}, \mu((E \backslash A) \cap B)$ is both non-negative and non-positive, whence it is zero. Similarly $\mu((E \backslash B) \cap A)=0$. This implies that $\mu(E \backslash A)=\mu(E \backslash B)$.

Now, for every $E \in \mathcal{M}$, we calculate

$$
\begin{aligned}
\mu^{+}(E) & =\mu^{+}(E \backslash A)+\mu^{+}(A) \\
& =\mu^{+}(E \backslash A) \\
& =\mu(E \backslash A)+\mu^{-}(E \backslash A) \\
& =\mu(E \backslash A) \\
& =\mu(E \backslash B) \\
& =\mu(E \backslash B)+\sigma^{-}(E \backslash B) \\
& =\sigma^{+}(E \backslash B) \\
& =\sigma^{+}(E \backslash B)+\sigma^{+}(B) \\
& =\sigma^{+}(E) .
\end{aligned}
$$

Thus $\mu^{+}=\sigma^{+}$. Similarly one proves that $\mu^{-}=\sigma^{-}$. Therefore the Jordan decomposition is unique.
3. Assume that $\mu \ll \nu$. Let $A \in M$ be s.t. $\nu(A)=0$. Then by assumption $\mu(A)=0$. Then $\mu(B)=0$ for all $B \subset A$. But then $V(\mu, A)=0$ so $V(\mu, \cdot) \ll \nu$.

For the other direction assume that $V(\mu, \cdot) \ll \nu$. Let $\nu(A)=0$ for some $A \in M$. Then $|\mu(A)| \leq V(\mu, A)=0$, which proves the claim.
4. Let m_{n} be the Lebesgue measure. This measure has no atoms. Suppose otherwise and let A its atom. Then by problem 5 . there exists $a \in A$ s.t. $m_{n}(A \backslash\{a\})=0$. But then $m_{n}(A)=m_{n}(A \backslash\{a\})+m_{n}(\{a\})=0+0=0$ which is not possible as A is an atom of m_{n}.

Let A be an atom of the counting measure. Clearly $\# A=1$, as if $\# A \geq 2$ then A contains a singleton which has measure one. On the other hand, singletons are atoms because only subset they contain is the empty set which has measure zero.
5. Let split \mathbb{R}^{n} into dyadic intervals. For $k \in \mathbb{Z}$ let \mathcal{D}_{k} be the collection of dyadic cubes with sidelength 2^{-k}. Then we can split the measure as

$$
\mu(A)=\sum_{Q \in \mathcal{D}_{k}} \mu(A \cap Q)
$$

for all atoms A. Since A is an atom we find for all k an unique cube $Q_{k} \in \mathcal{D}_{k}$ s.t. $\mu(A)=\mu\left(A \cap Q_{k}\right)$. As \mathbb{R}^{n} is complete $A \cap Q_{k}$ converges to some point $a \in \mathbb{R}^{n}$ as $k \longrightarrow \infty$. But then using the convergence of measures we have also $\mu\left(A \cap Q_{k}\right) \longrightarrow \mu(\{a\})$ as $k \longrightarrow \infty$. As $\mu\left(A \cap Q_{k}\right)=\mu(A)$ for all $k \in \mathbb{N}$ it follows that $\mu(A)=\mu(\{a\})$ i.e. $\mu(A \backslash\{a\})=0$ (because $\mu(A)<\infty)$ as desired.
6. Since μ has no atoms, for every $F \in \mathcal{M}$ with $\mu(F)>0$ there is $E \in \mathcal{M}, E \subset F$, such that $0<\mu(E)<\mu(F)$. Then either $0<\mu(E) \leq \mu(F) / 2$ or $0<\mu(F \backslash E) \leq \mu(F) / 2$. Thus we find $E_{1} \in \mathcal{M}$ such that $0<\mu\left(E_{1}\right) \leq \mu(F) / 2$. By the same argument there is $E_{2} \in \mathcal{M}, E_{2} \subset E_{1}$, such that $0<\mu\left(E_{2}\right) \leq \mu\left(E_{1}\right) / 2$. It follows that we can find sets $E \in \mathcal{M}, E \subset F$, with arbitrarily small positive measure. In particular, there is $A_{1} \in \mathcal{M}$ such that $0<\mu\left(A_{1}\right) \leq t$.

Suppose we have chosen $A_{1} \subset A_{2} \subset \ldots A_{k}$ such that $0<\mu\left(A_{j}\right) \leq t$. Set

$$
s_{k}=\sup \left\{\mu(B): B \in \mathcal{M}, \mu(B) \leq t, A_{k} \subset B\right\}
$$

Choose $A_{k+1} \in \mathcal{M}$ such that $s_{k}-1 / k<\mu\left(A_{k+1}\right) \leq t$ and $A_{k} \subset A_{k+1}$. Let $A=\cup_{k=1}^{\infty} A_{k}$. Then $\mu(A)=\lim _{k \rightarrow \infty} \mu\left(A_{k}\right) \leq t$. Let $B \in \mathcal{M}, \mu(B) \leq t, A \subset B$. Since for all $k, A_{k} \subset B$, we have by the definition of $s_{k}, \mu(B) \leq s_{k} \leq \mu\left(A_{k+1}\right)+1 / k \leq \mu(B)+1 / k$, which implies $\mu(B)=\mu(A)$.

So we have shown that if $B \in \mathcal{M}, \mu(B) \leq t$ and $A \subset B$, then $\mu(B)=\mu(A)$. This implies that $\mu(A)=t$, since if we had $\mu(A)<t$, we could choose $E \subset X \backslash A$ with $0<\mu(E)<t-\mu(A)$ and then $B=A \cup E$ would contradict the above statement.

