Real Analysis II 6. exercise set, solutions

1. Let $\varepsilon > 0$ be arbitrary. Since μ is a Radon measure there exists an open set $U \subset \mathbb{R}^n$ s.t. $A \subset U$ and $\mu(U) \leq \mu(A) + \varepsilon$. For each $x \in A$ choose a maxmal cube in U containing x and contained in U. Call this cube Q_x . Now $\mathcal{B} = \{Q_x : x \in A\}$ is a cover of A. By maximality and the dyadic structure of A these cubes are pairwise disjoint. Also note that there are only countably many such cubes as there are only countably many dyadic cubes. Furthermore

$$\sum_{i} \mu(Q_i) = \mu\left(\bigcup_{i} Q_i\right) \le \mu(U) \le \mu(A) + \varepsilon,$$

which completes the proof.

2. We imitate the proof of Theorem 5.14. of Holopainen's notes. As

$$\frac{\mu(A \cap Q_k(x))}{\mu(Q_k(x))} \le 1$$

it suffices to show that

$$\liminf_{k \to \infty} \frac{\mu(A \cap Q_k(x))}{\mu(Q_k(x))} = 1$$

a.e. $x \in A$. Write

$$\left\{x \in A : \liminf_{k \to \infty} \frac{\mu(A \cap Q_k(x))}{\mu(Q_k(x))} < 1\right\} = \bigcup_{i=1}^{\infty} A_i$$

where

$$A_{i} = \left\{ x \in A : \liminf_{k \to \infty} \frac{\mu(A \cap Q_{k}(x))}{\mu(Q_{k}(x))} < 1 - \frac{1}{i}, |x| < i \right\}.$$

It is enough to show that A_i is measurable and that $\mu(A_i) = 0$ for every $i \in \mathbb{N}$.

Let $\varepsilon > 0$ be arbitrary. Since μ is a Radon measure we find an open set U s.t. $A_i \subset U$ and $\mu(U) \leq \mu(A_i) + \varepsilon$. Now the family

$$\mathcal{V} = \{Q_k(x) : x \in A_i, \mu(A \cap Q_k(x)) < (1 - 1/i)\mu(Q_k(x)), Q_k(x) \subset U\}$$

satisfies the conditions of Vitali's covering theorem. Using that we find pairwise disjoint dyadic cubes $Q_1, Q_2, \ldots \in \mathcal{V}$ s.t.

$$\mu\left(A_i\setminus\bigcup Q_k\right)=0.$$

Now we estimate by using the measurability of A_i :

$$\begin{split} \mu(A_i) &= \mu \left(A_i \cap \bigcup_k Q_k \right) + \mu \left(A_i \setminus \bigcup_k Q_k \right) \\ &= \mu \left(A_i \cap \bigcup_k Q_k \right) \\ &\leq \sum_k \mu(A_i \cap Q_k) \\ &\leq \left(1 - \frac{1}{i} \right) \sum_k \mu(Q_k) \\ &\leq \left(1 - \frac{1}{i} \right) \mu(U) \\ &\leq \left(1 - \frac{1}{i} \right) (\mu(A_i) + \varepsilon). \end{split}$$

By letting $\varepsilon \longrightarrow 0$ we get that $\mu(A_i) \le (1 - 1/i)\mu(A_i) < \infty$. As 1 - 1/i < 1 it follows that $\mu(A_i) = 0$. Finally A_i 's are clearly measurable as they are unions of sets which are intersections of A with dyadic cubes. This concludes the proof.

3. Let \mathcal{A} be a two point set $\{0, 1\}$. By considering the cover [-1/2, 1/2], [1/2, 3/2] we see that $P(1), Q(1) \geq 2$. To prove that both P(1) and Q(1) can be equal to two we make the following inductive construction. Let $\mathcal{A} \subset \mathbb{R}$ be a bounded set. By Besicovitch covering theorem we find a sequence of intervals $\{B_j\}$ which cover \mathcal{A} and the number of overlappings is P(1). Consider the interval B_1 . If $\mathcal{A} \subset \bigcup B_j \setminus \{B_1\}$, then set $B'_1 = \emptyset$ and $B'_1 = B_1$ otherwise. Assume that the set B'_{n-1} is chosen. Then set $B'_n = \emptyset$ if

$$A \subset \left(\bigcup_{j=1}^{n-1} B'_i\right) \cup \left(\bigcup_{j=n}^{\infty} B_i\right) \setminus \{B_n\}$$

and $B'_n = B_n$ otherwise.

This process produces a new set of intervals $B = \{B'_j\}$. Now $A \subset \bigcup B'_j$ as every point in A is covered by finitely many intervals. If some $x \in \mathbb{R}$ is covered by three intervals B_j then it follows from the construction that one of the new intervals is actually empty, because if any three intervals contain a common point, one of them is contained the union of the other two. Therefore $P(1) \leq 2$ in this case. As noted in the beginning $P(1) \geq 2$ so P(1) can be 2.

There is at most one interval $B'_j = B^+_{1,1}$ which intersects B'_1 and contains its right endpoint. Again there is at most one interval $B'_j = B^+_{1,2}$ which intersects $B^+_{1,1}$ and contains its right end-point. Continue this as long as such intervals are found. We put B'_1 and the $B^+_{1,j}$ with even j into a collection \mathcal{A} and the $B^+_{1,j}$ with odd j into a collection \mathcal{B} . Perform the similar operation the left of B_1 obtaining the intervals $B^-_{1,j}$ and putting them into \mathcal{A} and \mathcal{B} accordingly. If the families \mathcal{A} and \mathcal{B} do not yet cover \mathcal{A} , let j be the smallest index for which B'_j is not in these families. Then B'_j must be disjoint with every interval in \mathcal{A} and \mathcal{B} . Perform the same operation as above starting with B'_j and putting new intervals into \mathcal{A} and \mathcal{B} . Continuing this as long as possible, perhaps infinitely many times, gives the desired disjoint families \mathcal{A} and \mathcal{B} .

4. Let $e_1 = (1, 0, ..., 0), e_2 = (0, 1, 0, ..., 0), ..., e_n = (0, ..., 0, 1)$. Consider the set $\mathcal{A} = \{e_\ell\}_{\ell=1}^n$ and it's cover $\{\overline{B}(e_\ell, 1)\}_{\ell=1}^n$. We have $|e_m - e_n| = \sqrt{2}$ for all m, n so every element of \mathcal{A} belongs to exactly one of the cover sets. Furthermore the origin belongs to every cover set so we must have $P(n) \ge n$. Also $\overline{B}(e_i, 1) \cap \overline{B}(e_j, 1) \neq \emptyset$ for every i, j which implies that $Q(n) \ge n$. It follows immediately that $P(n), Q(n) \longrightarrow \infty$ as $n \longrightarrow \infty$.

5. Let $\mathcal{A} = \{e_n : n \in \mathbb{N}\}$ be an orthonormal basis in a given infinite dimensional inner product space. For all n, m we have

$$|e_n - e_m|^2 = \langle e_n - e_m, e_n - e_m \rangle = \langle e_n, e_n \rangle - \langle e_n, e_m \rangle - \langle e_n, e_m \rangle + \langle e_m, e_m \rangle = 2$$

so $|e_n - e_m| = \sqrt{2}$. Choose a cover $\{\overline{B}(e_n, 1) : n \in \mathbb{N}\}$ for \mathcal{A} . As $1 < \sqrt{2}$ every element belongs to exactly one of the balls in the cover, so we cannot remove any of these sets. On the other-hand the origin belongs to every set in the cover. Thus Besicovitch's covering theorem does not hold for infinite dimensional inner product spaces.

6. Let $x \in X$ and r > 0. Let $\{x_j\}_{j=1}^N$ be the set of points in B(x, 2r) s.t. $d(x_i, x_j) > r$ whenever $i \neq j$. Here the number of points is a finite number depending on r. Clearly

$$B(x,2r) \subset \bigcup_{j=1}^{N} B(x_j,r).$$

Hence we are done if we show that N is uniformly bounded.

Note that balls $B(x_i, r/2)$ are disjoint and belong to $B(x_i, 3r)$. Thus

$$\sum_{j=1}^{N} \mu(B(x_j, r)) \le \mu(B(x, 3r)).$$

On the other-hand, by using the observation that $B(x,3r) \subset B(x_j,6r)$ for every j and the doubling condition repeatedly we get

$$\mu(B(x, 3r)) \le \mu(B(x_j, 6r)) \\\le C\mu(B(x_j, 3r)) \\\le C^2\mu(B(x_j, 3r/2)) \\\le C^3\mu(B(x_j, 3r/4)) \\\le C^3\mu(B(x_j, r)).$$

Thus

$$\sum_{j=1}^{N} \mu(B(x_j, r)) \le C^3 \mu(B(x_j, r)).$$

As this holds for every j and that $\mu(B(x,r)) > 0$ it follows that $N \leq C^3$. Proof completed.