Real Analysis II
6. exercise set, solutions

1. Let € > 0 be arbitrary. Since p is a Radon measure there exists an open set U C R” s.t.
A CU and p(U) < u(A) + €. For each x € A choose a maxmal cube in U containing = and
contained in U. Call this cube Q.. Now B = {Q, : z € A} is a cover of A. By maximality
and the dyadic structure of A these cubes are pairwise disjoint. Also note that there are only
countably many such cubes as there are only countably many dyadic cubes. Furthermore

D> ow@)=mn (U Qz) < u(U) < u(A) +e,
which completes the proof. O

2. We imitate the proof of Theorem 5.14. of Holopainen’s notes. As
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a.e. ¢ € A. Write
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It is enough to show that A; is measurable and that u(A;) = 0 for every ¢ € N.
Let € > 0 be arbitrary. Since u is a Radon measure we find an open set U s.t. A; C U
and p(U) < u(A;) + e. Now the family

V={Qk(x) : x € Ai, p(AN Qx(x)) < (1 = 1/0)u(Qx(x)), Qr(z) C U}
satisfies the conditions of Vitali’s covering theorem. Using that we find pairwise disjoint

dyadic cubes @1,Q2,... € V s.t.
% (Ai \UQk) =0.

Now we estimate by using the measurability of A;:
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By letting ¢ — 0 we get that p(A;) < (1 —1/i)u(4;) < co. As 1 —1/i < 1 it follows
that u(A;) = 0. Finally A;’s are clearly measurable as they are unions of sets which are
intersections of A with dyadic cubes. This concludes the proof. O

3. Let A be a two point set {0,1}. By considering the cover [—1/2,1/2], [1/2,3/2] we see
that P(1),Q(1) > 2. To prove that both P(1) and Q(1) can be equal to two we make the
following inductive construction. Let A C R be a bounded set. By Besicovitch covering
theorem we find a sequence of intervals {B;} which cover A and the number of overlappings
is P(1). Consider the interval By. If A C |JB; \ {B1}, then set B} = 0 and B} = B
otherwise. Assume that the set B/, is chosen. Then set B/, = ) if

n—1 oo
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and B!, = B,, otherwise.

This process produces a new set of intervals B = {B’}. Now A C (J B} as every point in
A is covered by finitely many intervals. If some x € R is covered by three intervals B; then
it follows from the construction that one of the new intervals is actually empty, because if
any three intervals contain a common point, one of them is contained the union of the other
two. Therefore P(1) < 2 in this case. As noted in the beginning P(1) > 2 so P(1) can be 2.

There is at most one interval B} = Bf’ 1 which intersects B} and contains its right end-
point. Again there is at most one interval B} = Bf o which intersects Bf: ; and contains its
right end-point. Continue this as long as such intervals are found. We put B{ and the Bff j
with even j into a collection A and the Bf:j with odd j into a collection B. Perform the
similar operation the left of B; obtaining the intervals B; ; and putting them into A and
B accordingly. If the families .4 and B do not yet cover A, let j be the smallest index for
which B; is not in these families. Then B;- must be disjoint with every interval in A and
B. Perform the same operation as above starting with B; and putting new intervals into A
and B. Continuing this as long as possible, perhaps infinitely many times, gives the desired
disjoint families A and B.

4. Let e; = (1,0,...,0), e2 = (0,1,0,...,0), ...,e, = (0,...,0,1). Consider the set A= {es}}_,
and it’s cover {B(es, 1)}7_,. We have |e,, — e,| = /2 for all m,n so every element of A
belongs to exactly one of the cover sets. Furthermore the origin belongs to every cover set
so we must have P(n) > n. Also B(e;, 1) N B(ej,1) # 0 for every i, j which implies that
Q(n) > n. It follows immediately that P(n),Q(n) — oo as n —» oo. O

5. Let A = {e, : n € N} be an orthonormal basis in a given infinite dimensional inner
product space. For all n, m we have

|en - em|2 = <en — €m,En — em> = <€n,€n> - <6n,6m> - <en7em> + <em7em> =2

S0 |en — em| = V2. Choose a cover {B(e,,1) : n € N} for A. As 1 < /2 every element
belongs to exactly one of the balls in the cover, so we cannot remove any of these sets. On the
other-hand the origin belongs to every set in the cover. Thus Besicovitch’s covering theorem
does not hold for infinite dimensional inner product spaces. O

6. Let x € X and r > 0. Let {xj}j»v:l be the set of points in B(z,2r) s.t. d(z;,z;) > 7
whenever i # j. Here the number of points is a finite number depending on r. Clearly

B(xz,2r) C U B(z;,r).
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Hence we are done if we show that N is uniformly bounded.
Note that balls B(z;,r/2) are disjoint and belong to B(z;,3r). Thus

N

> w(B(j.r)) < u(B(w,3r)).

j=1

On the other-hand, by using the observation that B(z,3r) C B(xz;,6r) for every j and the
doubling condition repeatedly we get

u(B(,3r)) < u(B(x;,6r))
< CU(B(xjv 37“))
< C?u(B(zj,3r/2))
< C°u(B(xj,3r/4))
< CPu(B(xj,7)).
Thus
N
> u(Blay,) < CuBlas.r).

As this holds for every j and that p(B(z,r)) > 0 it follows that N < C3. Proof completed.
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