
Real Analysis II
6. exercise set, solutions

1. Let ε > 0 be arbitrary. Since µ is a Radon measure there exists an open set U ⊂ Rn s.t.
A ⊂ U and µ(U) ≤ µ(A) + ε. For each x ∈ A choose a maxmal cube in U containing x and
contained in U . Call this cube Qx. Now B = {Qx : x ∈ A} is a cover of A. By maximality
and the dyadic structure of A these cubes are pairwise disjoint. Also note that there are only
countably many such cubes as there are only countably many dyadic cubes. Furthermore∑

i

µ(Qi) = µ

(⋃
i

Qi

)
≤ µ(U) ≤ µ(A) + ε,

which completes the proof. �

2. We imitate the proof of Theorem 5.14. of Holopainen’s notes. As

µ(A ∩Qk(x))

µ(Qk(x))
≤ 1

it suffices to show that

lim inf
k→∞

µ(A ∩Qk(x))

µ(Qk(x))
= 1

a.e. x ∈ A. Write {
x ∈ A : lim inf

k→∞

µ(A ∩Qk(x))

µ(Qk(x))
< 1

}
=

∞⋃
i=1

Ai,

where

Ai =

{
x ∈ A : lim inf

k→∞

µ(A ∩Qk(x))

µ(Qk(x))
< 1− 1

i
, |x| < i

}
.

It is enough to show that Ai is measurable and that µ(Ai) = 0 for every i ∈ N.
Let ε > 0 be arbitrary. Since µ is a Radon measure we find an open set U s.t. Ai ⊂ U

and µ(U) ≤ µ(Ai) + ε. Now the family

V = {Qk(x) : x ∈ Ai, µ(A ∩Qk(x)) < (1− 1/i)µ(Qk(x)), Qk(x) ⊂ U}

satisfies the conditions of Vitali’s covering theorem. Using that we find pairwise disjoint
dyadic cubes Q1, Q2, ... ∈ V s.t.

µ
(
Ai \

⋃
Qk

)
= 0.

Now we estimate by using the measurability of Ai:

µ(Ai) = µ

(
Ai ∩

⋃
k

Qk

)
+ µ

(
Ai \

⋃
k

Qk

)

= µ

(
Ai ∩

⋃
k

Qk

)
≤
∑
k

µ(Ai ∩Qk)

≤
(
1− 1

i

)∑
k

µ(Qk)

≤
(
1− 1

i

)
µ(U)

≤
(
1− 1

i

)
(µ(Ai) + ε).
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By letting ε −→ 0 we get that µ(Ai) ≤ (1 − 1/i)µ(Ai) < ∞. As 1 − 1/i < 1 it follows
that µ(Ai) = 0. Finally Ai’s are clearly measurable as they are unions of sets which are
intersections of A with dyadic cubes. This concludes the proof. �

3. Let A be a two point set {0, 1}. By considering the cover [−1/2, 1/2], [1/2, 3/2] we see
that P (1), Q(1) ≥ 2. To prove that both P (1) and Q(1) can be equal to two we make the
following inductive construction. Let A ⊂ R be a bounded set. By Besicovitch covering
theorem we find a sequence of intervals {Bj} which cover A and the number of overlappings
is P (1). Consider the interval B1. If A ⊂

⋃
Bj \ {B1}, then set B′1 = ∅ and B′1 = B1

otherwise. Assume that the set B′n−1 is chosen. Then set B′n = ∅ if

A ⊂

n−1⋃
j=1

B′i

 ∪
 ∞⋃

j=n

Bi

 \ {Bn}

and B′n = Bn otherwise.
This process produces a new set of intervals B = {B′j}. Now A ⊂

⋃
B′j as every point in

A is covered by finitely many intervals. If some x ∈ R is covered by three intervals Bj then
it follows from the construction that one of the new intervals is actually empty, because if
any three intervals contain a common point, one of them is contained the union of the other
two. Therefore P (1) ≤ 2 in this case. As noted in the beginning P (1) ≥ 2 so P (1) can be 2.

There is at most one interval B′j = B+
1,1 which intersects B′1 and contains its right end-

point. Again there is at most one interval B′j = B+
1,2 which intersects B+

1,1 and contains its
right end-point. Continue this as long as such intervals are found. We put B′1 and the B+

1,j

with even j into a collection A and the B+
1,j with odd j into a collection B. Perform the

similar operation the left of B1 obtaining the intervals B−1,j and putting them into A and
B accordingly. If the families A and B do not yet cover A, let j be the smallest index for
which B′j is not in these families. Then B′j must be disjoint with every interval in A and
B. Perform the same operation as above starting with B′j and putting new intervals into A
and B. Continuing this as long as possible, perhaps infinitely many times, gives the desired
disjoint families A and B.

4. Let e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ..., en = (0, ..., 0, 1). Consider the set A = {e`}n`=1

and it’s cover {B(e`, 1)}n`=1. We have |em − en| =
√
2 for all m,n so every element of A

belongs to exactly one of the cover sets. Furthermore the origin belongs to every cover set
so we must have P (n) ≥ n. Also B(ei, 1) ∩ B(ej , 1) 6= ∅ for every i, j which implies that
Q(n) ≥ n. It follows immediately that P (n), Q(n) −→∞ as n −→∞. �

5. Let A = {en : n ∈ N} be an orthonormal basis in a given infinite dimensional inner
product space. For all n,m we have

|en − em|2 = 〈en − em, en − em〉 = 〈en, en〉 − 〈en, em〉 − 〈en, em〉+ 〈em, em〉 = 2

so |en − em| =
√
2. Choose a cover {B(en, 1) : n ∈ N} for A. As 1 <

√
2 every element

belongs to exactly one of the balls in the cover, so we cannot remove any of these sets. On the
other-hand the origin belongs to every set in the cover. Thus Besicovitch’s covering theorem
does not hold for infinite dimensional inner product spaces. �

6. Let x ∈ X and r > 0. Let {xj}Nj=1 be the set of points in B(x, 2r) s.t. d(xi, xj) > r
whenever i 6= j. Here the number of points is a finite number depending on r. Clearly

B(x, 2r) ⊂
N⋃
j=1

B(xj , r).
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Hence we are done if we show that N is uniformly bounded.
Note that balls B(xi, r/2) are disjoint and belong to B(xi, 3r). Thus

N∑
j=1

µ(B(xj , r)) ≤ µ(B(x, 3r)).

On the other-hand, by using the observation that B(x, 3r) ⊂ B(xj , 6r) for every j and the
doubling condition repeatedly we get

µ(B(x, 3r)) ≤ µ(B(xj , 6r))

≤ Cµ(B(xj , 3r))

≤ C2µ(B(xj , 3r/2))

≤ C3µ(B(xj , 3r/4))

≤ C3µ(B(xj , r)).

Thus

N∑
j=1

µ(B(xj , r)) ≤ C3µ(B(xj , r)).

As this holds for every j and that µ(B(x, r)) > 0 it follows that N ≤ C3. Proof completed.
�
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