Real Analysis II

5. exercise set, solutions

1. Let $s<\operatorname{dim} A$ and $t<\operatorname{dim} B$. Then by definition of Hausdorff measure $\mathcal{H}^{s}(A)>0$ and $\mathcal{H}(B)>0$. Then by Frostman's lemma we find Radon measures μ and ν s.t. supp $\mu \subset A$, $\mu(A)>0, \mu(B(x, r)) \leq c r^{s}$ for all $x \in \mathbb{R}^{m}, r>0$ and $\operatorname{supp} \nu \subset B, \nu(B)>0, \nu(B(y, r)) \leq c^{\prime} r^{t}$ for all $y \in \mathbb{R}^{n}, r>0$. As μ and ν are Radon measures we can define the product measure $\sigma:=$ $\mu \times \nu$. Note that $B((x, y), r) \subset B(x, r) \times B(y, r)$, so $\sigma(B((x, y), r)) \leq \mu(B(x, r)) \nu(B(y, r)) \leq$ $c c^{\prime} r^{s+t}$. As supp $\mu \subset A$ and $\operatorname{supp} \nu \subset B$ it follows that $\operatorname{supp} \sigma \subset A \times B$. Also clearly $\sigma(A \times B)=\mu(A) \nu(B)>0$.

Hence by the other direction of Frostman's lemma $\mathcal{H}^{s+t}(A \times B)>0$. This gives $\operatorname{dim}(A \times$ $B) \geq s+t$. As s and t were arbitrary it follows that $\operatorname{dim} A+\operatorname{dim} B \leq \operatorname{dim}(A \times B)$.
2. a) Assume otherwise: there exists $x \in \mathbb{R}^{n}$ s.t. $C_{s}(\{x\})>0$. Then by remark 4.76 .3 there exists a probability measure $\mu \in \mathcal{M}_{1}(\{x\})$ s.t. $I_{s}(\mu)<\infty$. But clearly the only such probability measure is the Dirac measure δ_{x}. But then

$$
I_{s}(\mu)=I_{s}\left(\delta_{x}\right)=\frac{1}{|x-x|^{s}}=\infty
$$

which is a contradiction.
b) As A is bounded we have that $\operatorname{diam} A<\infty$. But then $|x-y|^{s} \leq[\operatorname{diam}(A)]^{s}$ for all $x, y \in A$. Thus for all $\mu \in \mathcal{M}_{1}(A)$ we have

$$
I_{s}(\mu) \geq \frac{1}{[\operatorname{diam}(A)]^{s}}
$$

which gives $C_{s}(A) \leq[\operatorname{diam}(A)]^{2}<\infty$ as desired.
3. Suppose $C_{s}(A)>0$. Then there exists a probability measure $\mu \in \mathcal{M}_{1}(A)$ s.t. $I_{s}(\mu)<\infty$. Then $\int|x-y|^{-s} d \mu y<\infty$ for μ almost all x. It follows that there is $C<\infty$ such that the set $A=\left\{x: \int|x-y|^{-s} d \mu y<C\right\}$ has positive μ measure. Then A is Borel set and we can find a closed subset C of A with positive μ measure. Let ν be the restriction of μ to C. Then $\int|x-y|^{-s} d \nu y<C$ for $x \in C$. Since C is closed, for any $x \in \mathbb{R}^{n}$ there is $x^{\prime} \in C$ such that $|x-y| \geq\left|x-x^{\prime}\right|$ for all $y \in C$. If $y \in \mathbb{R}^{n} \backslash B\left(x,\left|x-x^{\prime}\right|\right)$, then $\left|x^{\prime}-y\right| \leq\left|x^{\prime}-x\right|+|x-y| \leq 2|x-y|$. Since $\operatorname{supp}(\nu) \subset C$, we have

$$
\int|x-y|^{-s} d \nu y=\int_{\mathbb{R}^{n} \backslash B\left(x,\left|x-x^{\prime}\right|\right)}|x-y|^{-s} d \nu y \leq 2^{s} \int\left|x^{\prime}-y\right|^{-s} d \nu y<2^{s} C
$$

so $\int|x-y|^{-s} d \nu y$ is bounded.
If $\mu \in \mathcal{M}_{1}(A)$ s.t. $\int|x-y|^{-s} d \mu y$ is bounded, say $\int|x-y|^{-s} d \mu y<\mathrm{C}$, then $I_{s}(\mu) \leq C$ and so $C_{s}(A)>0$.
4. Suppose otherwise: $C_{s}\left(\cup K_{i}\right)>0$. Then by remark 4.76.3 of Holopainen's notes there exists a measure $\mu \in \mathcal{M}_{1}\left(\cup K_{i}\right)$ s.t. $I_{s}(\mu)<\infty$. As $\mu \in \mathcal{M}_{1}\left(\cup K_{i}\right)$ we have $\mu\left(K_{\ell}\right)>0$ for some $\ell \in \mathbb{N}$.

Let

$$
\mu_{\ell}=\frac{1}{\mu\left(K_{\ell}\right)} \mu
$$

be a normalized restriction of μ to K_{ℓ}. Now μ_{ℓ} is a Radon measure as $\mu\left(\mathbb{R}^{n}\right)=1$ and the support of μ_{ℓ} is a subset of the compact set K_{ℓ}. The s-energy is

$$
I_{s}\left(\mu_{\ell}\right)=\frac{1}{\mu\left(K_{\ell}\right)^{2}} \int_{K_{\ell} \times K_{\ell}} \frac{\mathrm{d}(\mu \times \mu)(x, y)}{|x-y|^{s}} \leq \frac{1}{\mu\left(K_{\ell}\right)^{2}} I_{s}(\mu)<\infty
$$

By remark 4.76.3 we have $C_{s}\left(K_{\ell}\right)>0$ which is a contradiction.
5. We shall use the fact that $\mu_{j} \times \mu_{j}$ converges weakly to $\mu \times \mu$. This follows since the linear combinations of the functions of the form $(x, y) \mapsto f(x) g(y), f, g \in C_{0}\left(\mathbb{R}^{n}\right)$ are dense in $C_{0}\left(\mathbb{R}^{n}\right)$. This can be proven using the general Stone-Weierstrass approximation theorem or be a direct argument.

To apply the fact that $\mu_{j} \longrightarrow \mu$ weakly we need, as $|\cdot|^{-s} \notin C_{0}(\mathbb{R})$, we need to approximate it by $C_{0}(\mathbb{R})$ functions. To this end there is an increasing sequence of functions $\left\{f_{k}\right\}_{k=1}^{\infty}$ in $C_{0}(\mathbb{R})$ s.t. $0 \leq f_{k}(x) \leq|x|^{-s}$ for all $x \in \mathbb{R}^{n}, k \in \mathbb{N}$ and $\lim _{k \rightarrow \infty} f_{k}(x)=|x|^{-s}$ for all $x \in \mathbb{R}$. Now we have

$$
\begin{aligned}
I_{s}(\mu) & =\sup _{k} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} f_{k}(|x-y|)^{-s} \mathrm{~d}(\mu \times \mu)(x, y) \\
& =\sup _{k} \lim _{j \longrightarrow \infty} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} f_{k}(|x-y|)^{-s} \mathrm{~d}\left(\mu_{j} \times \mu_{j}\right)(x, y) \\
& \leq \liminf _{j \longrightarrow \infty} \sup _{k} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} f_{k}(|x-y|)^{-s} \mathrm{~d}\left(\mu_{j} \times \mu_{j}\right)(x, y) \\
& \leq \liminf _{j \longrightarrow \infty} I_{s}\left(\mu_{j}\right),
\end{aligned}
$$

as desired.
6. The answer is $\operatorname{dim}(\mathbb{R}, d)=2$. Straightforward modification of the proof of Lemma 2.29.(i) of Holopainen's lecture notes shows that $\mathcal{H}^{s}(f(A)) \leq L^{s} \mathcal{H}^{\alpha s}(A)$ if f is a Hölder continuous mapping with exponent α and constant L for all $s>0$. Let now $s>(1 / \alpha) \operatorname{dim} A$. Then $\mathcal{H}^{\alpha s}(A)=0$ so the above gives $\mathcal{H}^{s}(f(A))=0$. Then by the definition of the Hausdorff dimension gives $s>\operatorname{dim} f(A)$. This shows that

$$
\begin{equation*}
\operatorname{dim} f(A) \leq \frac{1}{\alpha} \operatorname{dim} A \tag{1}
\end{equation*}
$$

for α-Hölder continuous maps f.
Consider first the identity mapping $i d: \mathbb{R} \longrightarrow(\mathbb{R}, d)$. This is Hölder continuous with exponent $\alpha=1 / 2$ and constant $L=1$. Thus by (1) we have

$$
\operatorname{dim}(\mathbb{R}, d) \leq \frac{1}{1 / 2} \operatorname{dim} \mathbb{R}=2
$$

Consider then the identity mapping $i d:(\mathbb{R}, d) \longrightarrow \mathbb{R}$. This is Hölder continuous with exponent $\alpha=2$ and constant $L=1$. Thus by (1) we have

$$
1=\operatorname{dim} \mathbb{R} \leq \frac{1}{2} \operatorname{dim}(\mathbb{R}, d)
$$

so $\operatorname{dim}(\mathbb{R}, d) \geq 2$. Thus $\operatorname{dim}(\mathbb{R}, d)=2$ as desired.

