Real Analysis II 5. exercise set, solutions

1. Let $s < \dim A$ and $t < \dim B$. Then by definition of Hausdorff measure $\mathcal{H}^s(A) > 0$ and $\mathcal{H}(B) > 0$. Then by Frostman's lemma we find Radon measures μ and ν s.t. supp $\mu \subset A$, $\mu(A) > 0, \mu(B(x,r)) \leq cr^s$ for all $x \in \mathbb{R}^m, r > 0$ and supp $\nu \subset B, \nu(B) > 0, \nu(B(y,r)) \leq c'r^t$ for all $y \in \mathbb{R}^n, r > 0$. As μ and ν are Radon measures we can define the product measure $\sigma := \mu \times \nu$. Note that $B((x,y),r) \subset B(x,r) \times B(y,r)$, so $\sigma(B((x,y),r)) \leq \mu(B(x,r))\nu(B(y,r)) \leq c'r^t$. As supp $\mu \subset A$ and supp $\nu \subset B$ it follows that supp $\sigma \subset A \times B$. Also clearly $\sigma(A \times B) = \mu(A)\nu(B) > 0$.

Hence by the other direction of Frostman's lemma $\mathcal{H}^{s+t}(A \times B) > 0$. This gives dim $(A \times B) \ge s + t$. As s and t were arbitrary it follows that dim $A + \dim B \le \dim(A \times B)$. \Box

2. a) Assume otherwise: there exists $x \in \mathbb{R}^n$ s.t. $C_s(\{x\}) > 0$. Then by remark 4.76.3 there exists a probability measure $\mu \in \mathcal{M}_1(\{x\})$ s.t. $I_s(\mu) < \infty$. But clearly the only such probability measure is the Dirac measure δ_x . But then

$$I_s(\mu) = I_s(\delta_x) = \frac{1}{|x-x|^s} = \infty,$$

which is a contradiction.

b) As A is bounded we have that diam $A < \infty$. But then $|x - y|^s \leq [\text{diam } (A)]^s$ for all $x, y \in A$. Thus for all $\mu \in \mathcal{M}_1(A)$ we have

$$I_s(\mu) \ge \frac{1}{[\text{diam }(A)]^s}$$

which gives $C_s(A) \leq [\text{diam } (A)]^2 < \infty$ as desired.

3. Suppose $C_s(A) > 0$. Then there exists a probability measure $\mu \in \mathcal{M}_1(A)$ s.t. $I_s(\mu) < \infty$. Then $\int |x-y|^{-s} d\mu y < \infty$ for μ almost all x. It follows that there is $C < \infty$ such that the set $A = \{x : \int |x-y|^{-s} d\mu y < C\}$ has positive μ measure. Then A is Borel set and we can find a closed subset C of A with positive μ measure. Let ν be the restriction of μ to C. Then $\int |x-y|^{-s} d\nu y < C$ for $x \in C$. Since C is closed, for any $x \in \mathbb{R}^n$ there is $x' \in C$ such that $|x-y| \ge |x-x'|$ for all $y \in C$. If $y \in \mathbb{R}^n \setminus B(x, |x-x'|)$, then $|x'-y| \le |x'-x|+|x-y| \le 2|x-y|$. Since $\sup(\nu) \subset C$, we have

$$\int |x-y|^{-s} \, d\nu y = \int_{\mathbb{R}^n \setminus B(x, |x-x'|)} |x-y|^{-s} \, d\nu y \le 2^s \int |x'-y|^{-s} \, d\nu y < 2^s C,$$

so $\int |x-y|^{-s} d\nu y$ is bounded.

If $\mu \in \mathcal{M}_1(A)$ s.t. $\int |x-y|^{-s} d\mu y$ is bounded, say $\int |x-y|^{-s} d\mu y < \mathbb{C}$, then $I_s(\mu) \leq C$ and so $C_s(A) > 0$.

4. Suppose otherwise: $C_s(\cup K_i) > 0$. Then by remark 4.76.3 of Holopainen's notes there exists a measure $\mu \in \mathcal{M}_1(\cup K_i)$ s.t. $I_s(\mu) < \infty$. As $\mu \in \mathcal{M}_1(\cup K_i)$ we have $\mu(K_\ell) > 0$ for some $\ell \in \mathbb{N}$.

Let

$$\mu_{\ell} = \frac{1}{\mu(K_{\ell})}\mu$$

be a normalized restriction of μ to K_{ℓ} . Now μ_{ℓ} is a Radon measure as $\mu(\mathbb{R}^n) = 1$ and the support of μ_{ℓ} is a subset of the compact set K_{ℓ} . The *s*-energy is

$$I_{s}(\mu_{\ell}) = \frac{1}{\mu(K_{\ell})^{2}} \int_{K_{\ell} \times K_{\ell}} \frac{\mathrm{d}(\mu \times \mu)(x, y)}{|x - y|^{s}} \le \frac{1}{\mu(K_{\ell})^{2}} I_{s}(\mu) < \infty.$$

5. We shall use the fact that $\mu_j \times \mu_j$ converges weakly to $\mu \times \mu$. This follows since the linear combinations of the functions of the form $(x, y) \mapsto f(x)g(y), f, g \in C_0(\mathbb{R}^n)$ are dense in $C_0(\mathbb{R}^n)$. This can be proven using the general Stone-Weierstrass approximation theorem or be a direct argument.

To apply the fact that $\mu_j \longrightarrow \mu$ weakly we need, as $|\cdot|^{-s} \notin C_0(\mathbb{R})$, we need to approximate it by $C_0(\mathbb{R})$ functions. To this end there is an increasing sequence of functions $\{f_k\}_{k=1}^{\infty}$ in $C_0(\mathbb{R})$ s.t. $0 \le f_k(x) \le |x|^{-s}$ for all $x \in \mathbb{R}^n, k \in \mathbb{N}$ and $\lim_{k \longrightarrow \infty} f_k(x) = |x|^{-s}$ for all $x \in \mathbb{R}$. Now we have

$$I_{s}(\mu) = \sup_{k} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} f_{k}(|x-y|)^{-s} d(\mu \times \mu)(x,y)$$

$$= \sup_{k} \lim_{j \longrightarrow \infty} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} f_{k}(|x-y|)^{-s} d(\mu_{j} \times \mu_{j})(x,y)$$

$$\leq \liminf_{j \longrightarrow \infty} \sup_{k} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} f_{k}(|x-y|)^{-s} d(\mu_{j} \times \mu_{j})(x,y)$$

$$\leq \liminf_{j \longrightarrow \infty} I_{s}(\mu_{j}),$$

as desired.

6. The answer is $\dim(\mathbb{R}, d) = 2$. Straightforward modification of the proof of Lemma 2.29.(*i*) of Holopainen's lecture notes shows that $\mathcal{H}^s(f(A)) \leq L^s \mathcal{H}^{\alpha s}(A)$ if f is a Hölder continuous mapping with exponent α and constant L for all s > 0. Let now $s > (1/\alpha) \dim A$. Then $\mathcal{H}^{\alpha s}(A) = 0$ so the above gives $\mathcal{H}^s(f(A)) = 0$. Then by the definition of the Hausdorff dimension gives $s > \dim f(A)$. This shows that

$$\dim f(A) \le \frac{1}{\alpha} \dim A \tag{1}$$

for α -Hölder continuous maps f.

Consider first the identity mapping $id : \mathbb{R} \longrightarrow (\mathbb{R}, d)$. This is Hölder continuous with exponent $\alpha = 1/2$ and constant L = 1. Thus by (1) we have

$$\dim(\mathbb{R}, d) \le \frac{1}{1/2} \dim \mathbb{R} = 2.$$

Consider then the identity mapping $id : (\mathbb{R}, d) \longrightarrow \mathbb{R}$. This is Hölder continuous with exponent $\alpha = 2$ and constant L = 1. Thus by (1) we have

$$1 = \dim \mathbb{R} \le \frac{1}{2} \dim(\mathbb{R}, d)$$

so dim $(\mathbb{R}, d) \ge 2$. Thus dim $(\mathbb{R}, d) = 2$ as desired.

 $\mathbf{2}$