Real Analysis II

3. exercise set, solutions

1. Clearly $\mu \times \nu(\emptyset)=\mu(\emptyset) \nu(\emptyset)=0 \cdot 0=0$. Suppose that $E \subset \bigcup_{k=1}^{\infty} E_{k}$ with $\mu \times \nu\left(E_{k}\right)<\infty$ for every k (if $\mu \times \nu\left(E_{k}\right)=\infty$ for some k there is nothing to prove). Let $\varepsilon>0$ be arbitrary. For every k there exists a sequence of rectangles $\left\{A_{j}^{k} \times B_{j}^{k}\right\}_{j=1}^{\infty}$ with $A_{j}^{k} \mu$-measurable and $B_{j}^{k} \nu$-measurable s.t. $E_{k} \subset \bigcup_{j=1}^{\infty}\left(A_{j}^{k} \times B_{j}^{k}\right)$ and

$$
\sum_{j=1}^{\infty} \mu\left(A_{j}^{k}\right) \nu\left(B_{j}^{k}\right) \leq \mu \times \nu\left(E_{k}\right)+\frac{\varepsilon}{2^{k}}
$$

Hence,

$$
\begin{aligned}
\mu \times \nu(E) & \leq \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mu\left(A_{j}^{k}\right) \nu\left(B_{j}^{k}\right) \\
& \leq \sum_{k=1}^{\infty}\left(\mu \times \nu\left(E_{k}\right)+\frac{\varepsilon}{2^{k}}\right) \\
& =\varepsilon+\sum_{k=1}^{\infty} \mu \times \nu\left(E_{k}\right) .
\end{aligned}
$$

As $\varepsilon>0$ was arbitrary, it follows that $\mu \times \nu(E) \leq \sum_{k=1}^{\infty} \mu \times \nu\left(E_{k}\right)$. Thus $\mu \times \nu$ is an outer measure.
2. Sorry, the claim is probably wrong without some extra assumptions on X and $Y, \mathbf{P M}$. It is true if X and Y are separable. Then for any given $\epsilon>0, X$ and Y can be written as a countable union of sets of diameter less than ϵ. It follows that in the definition of $\mu \times \nu$ we can restrict to coverings with $A_{i} \times B_{i}$ for which $d\left(A_{i} \times B_{i}\right)<\epsilon$. Then it can be shown shown that $d(E, F)>0$ implies $\mu \times \nu(E \cup F)=\mu \times \nu(E)+\mu \times \nu(F)$ as for Hausdorff measures. Under separability conditions one can also show that $\mu \times \nu$ is a Borel measure: then any open set is a countable union of product open sets, these are $\mu \times \nu$ measurable, so open sets are $\mu \times \nu$ measurable and therefore also Borel sets are $\mu \times \nu$ measurable. This is essentially the same as to say that for separable X and Y, the sigmaalgebra generated by product open (or Borel) sets is the sigma-algebra of Borel sets of $X \times Y$.
3. The answer is no. To see this, choose arbitrary non- μ-measurable set $A \subset X$ and ν measurable set $B \subset Y$ s.t. $\nu(B)=0$. Let $\mu^{*}(A)$ be outer measure of A. Then $\mu \times \nu(A \times B)=$ $\mu^{*}(A) \nu(B)=0$ so $A \times B$ is $\mu \times \nu$-measurable.
4. Let us define a function $f:[0,1] \times[0,1] \longrightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}1, & x=y \\ 0, & \text { otherwise }\end{cases}
$$

Now we have

$$
\int_{0}^{1}\left(\int_{0}^{1} f(x, y) \mathrm{d} \mu(x)\right) \mathrm{d} \nu(y)=\int_{0}^{1} 0 \mathrm{~d} \nu(y)=0
$$

and

$$
\int_{0}^{1}\left(\int_{0}^{1} f(x, y) \nu(y)\right) \mu(x)=\int_{0}^{1} 1 \mathrm{~d} \mu(x)=1
$$

so the conclusion of Fubini's theorem does not hold. The reason is that the counting measure ν is not σ-finite on the interval $[0,1]$.
5. Assume that $f: E \longrightarrow \mathbb{R}$ is Lebesgue measurable function. Define $g: E \times \mathbb{R} \longrightarrow \mathbb{R}$ by $g(x, y)=f(x)-y$. Let us show that g is measurable. Write $h: \mathbb{R} \longrightarrow \mathbb{R}, h(y)=y$, $\widetilde{f}, \widetilde{g}: E \times \mathbb{R} \longrightarrow \mathbb{R}, \widetilde{f}(x, y)=f(x)$ and $\widetilde{h}(x, y)=h(y)$. Now $\tilde{f}^{-1}\left(\left[a, \infty[)=f^{-1}([a, \infty[) \times \mathbb{R}\right.\right.$ and $\widetilde{h}^{-1}\left(\left[a, \infty[)=E \times h^{-1}([a, \infty[)\right.\right.$ for all $a \in \mathbb{R}$, which shows that $\widetilde{f}, \widetilde{g}$ are measurable functions as f, h are measurable functions and E, \mathbb{R} are measurable sets. Therefore $g(x, y)=$ $\widetilde{f}(x, y)-\widetilde{g}(x, y)$ is also measurable. Hence,

$$
\left\{(x, y) \in \mathbb{R}^{n+1}: x \in E, f(x) \geq y\right\}=g^{-1}([0, \infty[)
$$

As $[0, \infty[$ is a Borel set in \mathbb{R} this shows the measurability.
For the other direction assume that the set $S=\left\{(x, y) \in \mathbb{R}^{n+1}: x \in E, f(x) \geq y\right\}$ is Lebesgue measurable. By Lemma 1.53. of Holopainen's lecture notes the set $\{x \in E:(x, y) \in$ $S\}$ is measurable for every fixed $y \in \mathbb{R}$ which means that f is a Lebesgue measurable function.
6. Assume that the set E is Lebesgue measurable. Then also the complement E^{C} is measurable. The first condition implies that E^{C} does not contain a closed set of positive measure. This implies that $m_{2}\left(E^{C}\right)=0$, since it is well-known that a set of positive Lebesgue measure in \mathbb{R}^{2} (more generally in a polish space) contains a closed set of positive Lebesgue measure. Let

$$
\chi_{E}((x, y))= \begin{cases}1, & (x, y) \in E \\ 0, & (x, y) \notin E\end{cases}
$$

The second condition implies that for a fixed $x \in \mathbb{R}$ there are at most two points $y \in \mathbb{R}$ s.t. $\chi_{E}(x, y) \neq 0$. Similarly, for fixed $y \in \mathbb{R}$, there is at most two points $x \in \mathbb{R}$ s.t. $\chi_{E}(x, y) \neq 0$. As E is measurable, also χ_{E} is. Now by Tonelli's theorem

$$
m_{2}(E)=\int_{\mathbb{R}^{2}} \chi_{E}(x, y) \mathrm{d} m_{2}(x, y)=\int_{\mathbb{R}}\left(\int_{\mathbb{R}} \chi_{E}(x, y) \mathrm{d} x\right) \mathrm{d} y=0
$$

Let $A \subset \mathbb{R}^{2}$ be s.t. $m_{2}(A)>0$. As E is measurable we have by Caratheodory's condition

$$
0<m_{2}(A)=m_{2}(A \cap E)+m_{2}\left(A \cap E^{C}\right) \leq m_{2}(E)+m_{2}\left(E^{C}\right)=0+0=0
$$

which is a contradiction. Hence E is not Lebesgue measurable.

