
Real Analysis II
3. exercise set, solutions

1. Clearly µ× ν(∅) = µ(∅)ν(∅) = 0 · 0 = 0. Suppose that E ⊂
⋃∞

k=1Ek with µ× ν(Ek) <∞
for every k (if µ× ν(Ek) =∞ for some k there is nothing to prove). Let ε > 0 be arbitrary.
For every k there exists a sequence of rectangles {Ak

j × Bk
j }∞j=1 with Ak

j µ-measurable and
Bk

j ν-measurable s.t. Ek ⊂
⋃∞

j=1(A
k
j ×Bk

j ) and

∞∑
j=1

µ(Ak
j )ν(B

k
j ) ≤ µ× ν(Ek) +

ε

2k
.

Hence,

µ× ν(E) ≤
∞∑
k=1

∞∑
j=1

µ(Ak
j )ν(B

k
j )

≤
∞∑
k=1

(
µ× ν(Ek) +

ε

2k

)
= ε+

∞∑
k=1

µ× ν(Ek).

As ε > 0 was arbitrary, it follows that µ× ν(E) ≤
∑∞

k=1 µ× ν(Ek). Thus µ× ν is an outer
measure. �

2. Sorry, the claim is probably wrong without some extra assumptions on X
and Y , PM. It is true if X and Y are separable. Then for any given ε > 0, X and Y
can be written as a countable union of sets of diameter less than ε. It follows that in the
definition of µ× ν we can restrict to coverings with Ai ×Bi for which d(Ai ×Bi) < ε. Then
it can be shown shown that d(E,F ) > 0 implies µ × ν(E ∪ F ) = µ × ν(E) + µ × ν(F )
as for Hausdorff measures. Under separability conditions one can also show that µ × ν is
a Borel measure: then any open set is a countable union of product open sets, these are
µ× ν measurable, so open sets are µ× ν measurable and therefore also Borel sets are µ× ν
measurable. This is essentially the same as to say that for separable X and Y , the sigma-
algebra generated by product open (or Borel) sets is the sigma-algebra of Borel sets of X×Y .

3. The answer is no. To see this, choose arbitrary non-µ-measurable set A ⊂ X and ν-
measurable set B ⊂ Y s.t. ν(B) = 0. Let µ∗(A) be outer measure of A. Then µ×ν(A×B) =
µ∗(A)ν(B) = 0 so A×B is µ× ν-measurable.

4. Let us define a function f : [0, 1]× [0, 1] −→ R by

f(x, y) =

{
1, x = y

0, otherwise

Now we have ∫ 1

0

(∫ 1

0

f(x, y)dµ(x)

)
dν(y) =

∫ 1

0

0dν(y) = 0

and ∫ 1

0

(∫ 1

0

f(x, y)ν(y)

)
µ(x) =

∫ 1

0

1dµ(x) = 1,

1



so the conclusion of Fubini’s theorem does not hold. The reason is that the counting measure
ν is not σ-finite on the interval [0, 1].

5. Assume that f : E −→ R is Lebesgue measurable function. Define g : E × R −→ R
by g(x, y) = f(x) − y. Let us show that g is measurable. Write h : R −→ R, h(y) = y,
f̃ , g̃ : E × R −→ R, f̃(x, y) = f(x) and h̃(x, y) = h(y). Now f̃−1([a,∞[) = f−1([a,∞[) × R
and h̃−1([a,∞[) = E × h−1([a,∞[) for all a ∈ R, which shows that f̃ , g̃ are measurable
functions as f, h are measurable functions and E,R are measurable sets. Therefore g(x, y) =
f̃(x, y)− g̃(x, y) is also measurable. Hence,

{(x, y) ∈ Rn+1 : x ∈ E, f(x) ≥ y} = g−1([0,∞[).

As [0,∞[ is a Borel set in R this shows the measurability.
For the other direction assume that the set S = {(x, y) ∈ Rn+1 : x ∈ E, f(x) ≥ y} is

Lebesgue measurable. By Lemma 1.53. of Holopainen’s lecture notes the set {x ∈ E : (x, y) ∈
S} is measurable for every fixed y ∈ R which means that f is a Lebesgue measurable function.
�

6. Assume that the set E is Lebesgue measurable. Then also the complement EC is measur-
able. The first condition implies that EC does not contain a closed set of positive measure.
This implies that m2(E

C) = 0, since it is well-known that a set of positive Lebesgue measure
in R2 (more generally in a polish space) contains a closed set of positive Lebesgue measure.
Let

χE((x, y)) =

{
1, (x, y) ∈ E
0, (x, y) 6∈ E

The second condition implies that for a fixed x ∈ R there are at most two points y ∈ R s.t.
χE(x, y) 6= 0. Similarly, for fixed y ∈ R, there is at most two points x ∈ R s.t. χE(x, y) 6= 0.
As E is measurable, also χE is. Now by Tonelli’s theorem

m2(E) =

∫
R2

χE(x, y)dm2(x, y) =

∫
R

(∫
R
χE(x, y)dx

)
dy = 0.

Let A ⊂ R2 be s.t. m2(A) > 0. As E is measurable we have by Caratheodory’s condition

0 < m2(A) = m2(A ∩ E) +m2(A ∩ EC) ≤ m2(E) +m2(E
C) = 0 + 0 = 0,

which is a contradiction. Hence E is not Lebesgue measurable. �
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