Real Analysis II
3. exercise set, solutions

1. Clearly p x v(0) = p(@)v(®) = 0-0 = 0. Suppose that E C (J,o, E) with pu x v(Ej) < oo
for every k (if p X v(E})) = oo for some k there is nothing to prove). Let € > 0 be arbitrary.
For every k there exists a sequence of rectangles {AéC X B]’?};?‘;l with A;’? p-measurable and

BJ v-measurable s.t. By C [J;2, (A} x Bf) and

> g
ST H(AS(BY) < i x (B + o
j=1

Hence,

As e > 0 was arbitrary, it follows that u x v(E) < 377, x v(Ey). Thus p x v is an outer
measure. 0

2. Sorry, the claim is probably wrong without some extra assumptions on X
and Y, PM. It is true if X and Y are separable. Then for any given ¢ > 0, X and Y
can be written as a countable union of sets of diameter less than e. It follows that in the
definition of p x v we can restrict to coverings with A; x B; for which d(4; x B;) < e. Then
it can be shown shown that d(E,F) > 0 implies p X v(EUF) = p x v(E) + u x v(F)
as for Hausdorff measures. Under separability conditions one can also show that p x v is
a Borel measure: then any open set is a countable union of product open sets, these are
1 X v measurable, so open sets are i X v measurable and therefore also Borel sets are y X v
measurable. This is essentially the same as to say that for separable X and Y, the sigma-
algebra generated by product open (or Borel) sets is the sigma-algebra of Borel sets of X x Y.

3. The answer is no. To see this, choose arbitrary non-u-measurable set A C X and v-
measurable set B C Y s.t. v(B) = 0. Let ;1*(A) be outer measure of A. Then uxv(Ax B) =
w*(A)y(B) =0so A x Bis u X v-measurable.

4. Let us define a function f:[0,1] x [0,1] — R by

1, T=y
(I/‘, = .
f(.) {0, otherwise

/01 (/01 f(z, y)du(x)> dv(y) = /01 0dv(y) =0
/01 (/01 f(:c,y)u(y)> p(z) = /01 1du(z) =1,

Now we have

and



so the conclusion of Fubini’s theorem does not hold. The reason is that the counting measure
v is not o-finite on the interval [0, 1].

5. Assume that f : ' — R is Lebesgue measurable function. Define g : £ x R — R

by g(z,y) = f(z) —y. Let us show that g is measurable. Write h : R — R, h(y) = vy,
F,5:E xR R, f(z,y) = f(z) and h(z,y) = h(y). Now F([a,00) = £~ ([a,00[) x R
and h=1([a,00]) = E x h™1([a,00]) for all @ € R, which shows that f,§ are measurable
functions as f, h are measurable functions and E, R are measurable sets. Therefore g(x,y) =

flz,y) —g(x,y) is also measurable. Hence,
{(z,y) eR"™ 1z € B, f(z) 2y} = g~ ([0, 00]).

As [0, 00[ is a Borel set in R this shows the measurability.

For the other direction assume that the set S = {(x,y) € R"*! : x € E, f(x) > y} is
Lebesgue measurable. By Lemma 1.53. of Holopainen’s lecture notes the set {x € E : (z,y) €
S} is measurable for every fixed y € R which means that f is a Lebesgue measurable function.
O

6. Assume that the set F is Lebesgue measurable. Then also the complement E€ is measur-
able. The first condition implies that E¢ does not contain a closed set of positive measure.
This implies that my(EY) = 0, since it is well-known that a set of positive Lebesgue measure
in R? (more generally in a polish space) contains a closed set of positive Lebesgue measure.
Let

1, (z,y) € E

x((a,y) = {O e

The second condition implies that for a fixed x € R there are at most two points y € R s.t.
xe(z,y) # 0. Similarly, for fixed y € R, there is at most two points z € R s.t. xg(x,y) # 0.
As F is measurable, also xg is. Now by Tonelli’'s theorem

ma(B) = [ xeeamate) = [ ([ xetpac) =0

Let A C R? be s.t. ma(A) > 0. As E is measurable we have by Caratheodory’s condition
0 < ma(A) = ma(ANE) +ma(ANEC) <mo(E) +mao(ES)=0+0=0,

which is a contradiction. Hence FE is not Lebesgue measurable. O



