
Real Analysis II
2. exercise set, solutions

1. Let the Hausdorff measure given by open sets be H̃sδ(A). A δ-cover consisting of open
sets is a δ-cover in usual sense, so H̃sδ(A) ≥ Hsδ(A). On the otherhand, let ε > 0 be ar-
bitrary. For every δ-cover {Ai} of the set A, we find an open cover {Bi} s.t. Ai ⊂ Bi

and d(Bi) ≤ (1 + ε)d(Ai) for every i. Hence H̃s(1+ε)δ(A) ≤ H
s
δ(A). Letting ε −→ 0 gives

H̃sδ(A) ≤ Hsδ(A). Combining this with the observation in the beginning of the proof we have
H̃sδ(A) = Hsδ(A), as desired. �

2. Every δ-cover consisting of balls is a δ-cover in usual sense so Hsδ(A) ≤ Ssδ (A) for all δ > 0.
Letting δ −→ 0 gives the left inequality.

On the other hand, for every δ-cover {Ai} of A we can find 2δ-cover {Bi} consisting balls
s.t. Ai ⊂ Bi and diam(Bi) ≤ 2diam(Ai). Then Ss2δ(A) ≤ 2sHsδ(A) and the right inequality
follows by letting δ −→ 0. �

3. If Hs(A) = 0, then by definition

0 ≤ Hsδ(A) ≤ sup
δ>0
Hsδ(A) = Hs(A) = 0

yielding Hsδ(A) = 0.
For the opposite direction, suppose that Hsδ(A) = 0. Let 0 < ε < δ be arbitrary. Now, by

the assumption Hsδ(A) = 0, we can find a δ-cover {Ai} of the set A s.t.∑
i

d(Ai)
s < εs.

In particular, d(Ai) < ε for every i, so our cover is actually an ε-cover. Letting ε −→ 0 gives
Hs(A) = 0. �

4. Let us first consider the case where the set A is finite. In this case we have A = {a1, ..., an}
for some n ∈ N. Then for every δ > 0 we have A ⊂

⋃n
i=1B(ai, δ/2). Thus

H0
δ(A) ≤

n∑
i=1

(diam B(ai, δ/2))
0 = n.

On the other hand if 0 < δ < min |ai − aj | we need at least n δ-sets to cover A. Thus
H0
δ(A) ≥ n. Letting δ −→ 0 gives H0(A) = n.
If A is infinite, it contains an n element subset for every n ∈ N. Now the the finite

case together with the monotonicity of Hausdorff measure yield H0(A) = ∞ in this case.
Therefore H0 is the counting measure. �

Let us then check that µ is Borel regular. It is of course a Borel measure. Let us first
assume that A ⊂ X is finite and write A = {a1, ..., an}. As X is a metric space, A is closed
and hence Borel. If A is infinite we have µ(A) = µ(X) and we are done as X is open and
hence Borel.

The necessary condition for measure being Radon measure is, by definition, that compact
sets have finite measure. In this case it means that compact sets are finite i.e. X is discrete.
Now it follows easily form Theorem 1.28. of Holopainen’s notes that in this case the counting
measure is a Radon measure (see Remark 1.30.)

5. Let M = {E ⊂ X : E is µ −measurable}. Theorem 1.15. in Holopainen’s lecture notes
says that µ̃ := µ|M is a measure. By the regularity assumption for every An there exists
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µ̃-measurable set Bn s.t. An ⊂ Bn and µ(An) = µ̃(Bn). Write

B =

∞⋃
n=1

∞⋂
k=n

Bk.

Clearly
⋃
An ⊂ B. Therefore

µ

( ∞⋃
n=1

An

)
≤ µ̃(B)

(∗)
= lim

n−→∞
µ̃

( ∞⋂
k=n

Bk

)
≤ lim sup

n−→∞
µ̃(Bn) = lim

n−→∞
µ(An),

where the equality (*) follows from Theorem 1.10. (a) of Holopainen’s lecture notes. The
reverse inequality is clear from the monotonicity of µ, so

µ

( ∞⋃
n=1

An

)
= lim
n−→∞

µ(An),

as desired. �

6. Let us first check that ν is an outer measure. Since µ ≥ 0 we have ν ≥ 0. Also
ν(∅) ≤ µ(∅) = 0 so ν(∅) = 0. It is clear from the definition that if A ⊂ B, then ν(A) ≤ ν(B).
Let now A ⊂

⋃n
i=1Ai. Assume that ν(Ai) <∞ since otherwise there is nothing to prove. Let

ε > 0 be arbitrary. By definition we find a collection of µ-measurable sets Bi s.t. Ai ⊂ Bi
and ν(Ai) + ε2−i ≥ µ(Bi) for all i = 1, ..., n. Now we have

ν

(
n⋃
i=1

Ai

)
≤ µ

(
n⋃
i=1

Bi

)
=

n∑
i=1

µ(Bi) ≤ ε+
n∑
i=1

ν(Ai).

As this holds for every ε > 0 we have

ν(A) ≤ ν

(
n⋃
i=1

Ai

)
≤

n∑
i=1

ν(Ai).

Thus ν is an outer measure. �
Let us then check that ν is regular. Take a decreasing sequence of µ-measurable sets {Bn}

s.t. A ⊂ Bn for each n and µ(Bn) −→ ν(A). Let B =
⋂
Bn. Then B is µ-measurable and

A ⊂ B ⊂ Bn for each n so ν(A) ≤ µ(B) ≤ µ(Bn) −→ ν(A) which shows that ν is regular
once we have shown that sets inM are ν-measurable.

If A ∈M, the infimum is attained by µ(A), so ν(A) = µ(A).
Let A ∈ M. To prove that A is ν-measurable let E ⊂ X be arbitrary. Let ε > 0 and

choose B ∈M such that E ⊂ B and µ(B) ≤ ν(E) + ε. Then

ν(E) + ε ≥ µ(B) = µ(B ∩A) + µ(B \A) ≥ ν(E ∩A) + ν(E \A).

Letting ε→ 0, we conclude that A is ν-measurable.
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