Real Analysis II 10. exercise set, solutions

1. First note that clearly \emptyset , $\mathbb{R}^n \in \tau_d$. Let $A, B \in \tau_d$. As A and B are Lebesgue measurable also $A \cap B$ is. We need to check that $A \cap B \in \tau_d$. Let $x \in A \cap B$. Then

$$m_n(A \cap B(x,r)) + m_n(B \cap B(x,r)) - m_n((A \cap B) \cap B(x,r)) \le m_n(B(x,r))$$

or equivalently

$$\frac{m_n(A \cap B(x,r))}{m_n(B(x,r))} + \frac{m_n(B \cap B(x,r))}{m_n(B(x,r))} - 1 \le \frac{m_n((A \cap B) \cap B(x,r))}{m_n(B(x,r))}$$

for all r > 0. Letting $r \longrightarrow 0$ in both sides shows that

$$\lim_{r \to 0} \frac{m_n((A \cap B) \cap B(x, r))}{m_n(B(x, r))} \ge 1$$

when the limit exists. As the limit is clearly at most one it follows that it must be equal to one. Therefore $A \cap B \in \tau_d$. By iterating this result we get that all finite intersections belong to τ_d .

Let now \mathcal{J} be an index set. Let $\{A_j\}_{j\in\mathcal{J}}\in\tau_d$ and $A=\cup_{j\in\mathcal{J}}A_j$. Suppose that A is bounded. Let $\epsilon > 0$, Then

$$\mathcal{B} = \{\overline{B}(x,r) : \exists j \in \mathcal{J} \text{ s.t. } m_n(A_j \cap \overline{B}(x,r)) > (1-\epsilon)m_n(\overline{B}(x,r))\}$$

satisfies the assumptions of Vitali's covering theorem. Hence there are disjoint $B_i \in \mathcal{B}, i = 1, 2, \ldots$, such that $m_n(A_{j_i} \cap B_i) > (1 - \epsilon)m_n(B_i)$ for some $j_i \in \mathcal{J}$ and $m_n^*(A \setminus \bigcup_{i=1}^{\infty} B_i) = 0$. Let $E_{\epsilon} = \bigcup_{i=1}^{\infty} A_{j_i} \cap B_i$. Then

$$m_n(E_{\epsilon}) = \sum_{i=1}^{\infty} m_n(A_{j_i} \cap B_i) \ge \sum_{i=1}^{\infty} (1-\epsilon)m_n(B_i) \ge (1-\epsilon)m_n^*(A),$$

Since E_{ϵ} is measurable, $m_n^*(A) = m_n^*(E_{\epsilon}) + m_n^*(A \setminus E_{\epsilon})$ and so $m_n^*(A \setminus E_{\epsilon}) \leq \epsilon m_n^*(A)$. Hence we can find measurable sets $E_{1/k} \subset A, k = 1, 2, \ldots$ such that $m_n^*(A \setminus E_{1/k}) \leq (1/k)m_n^*(A)$. Then $m_n^*(A \setminus \bigcup_{i=1}^{\infty} E_{1/k}) = 0$, which implies that A is measurable. If A is not bounded we can apply the above to the sets $A_j \cap B(0, k), j \in \mathcal{J}, k = 1, 2, \ldots$ Since every point of A clearly is a density point, we have showed that τ_d is indeed a topology.

2. Suppose that $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ is approximately continuous. Let $U \subset \mathbb{R}^n$ be open. For every $x \in f^{-1}(U)$ there is a measurable set $A_x \subset \mathbb{R}^n$ such that $D(A_x, x) = 1, x \in A_x$ and $f(A_x) \subset U$. Then by the same argument as in exercise 1, $A = \bigcup_{x \in f^{-1}(U)} A_x \in \tau_d$. Since $A = f^{-1}(U)$ it follows that f is continuous in the density topology.

Suppose then that f is continuous in the density topology. Then for every k = 1, 2, ... there is $A_k \in \tau_d$ such that $f(A_k) \subset (f(x) - 1/k, f(x) + 1/k)$. There exist $r_k > 0$ such that

$$m_n(A_k \cap B(x,r)) > (1 - 1/k)m_n(B(x,r))$$
 for $0 < r < r_k$.

We can recursively choose $0 < s_k < r_k$ such that

$$m_n(A_k \cap B(x,r) \setminus B(x, s_{k+1})) > (1 - 1/k)m_n(B(x,r))$$
 for $s_k < r < r_k$.

Then $A = \bigcup_{i=1}^{\infty} A_k \setminus B(x, s_{k+1})$ is a measurable for which D(A, x) = 1 and $f(y) \to f(x)$ when $y \to x, y \in A$. Thus f is approximately continuous at x.

3. Assume that $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ is approximately continuous at the point $x \in \mathbb{R}^n$. Then, in particular, $\lim_{y \longrightarrow x, y \in A} f(y) = f(x)$ where A is a measurable for which D(A, x) = 1. Thus there exists $\delta > 0$ s.t. $|f(x) - f(y)| < \varepsilon$ when $y \in B(x, \delta) \cap A$. This gives

$$\lim_{r \to 0} \frac{m_n(\{y \in B(x, r) : |f(y) - f(x)| < \varepsilon\})}{m_n(B(x, r))} = 1$$

or

$$\lim_{r \to 0} \frac{m_n(\{y \in B(x, r) : |f(y) - f(x)| > \varepsilon\})}{m_n(B(x, r))} = 0,$$
(1)

as desired.

For the converse direction suppose that (1) holds and let $x \in \mathbb{R}^n$. Let $\{A_k\}_{k \in \mathbb{N}}$ be a decreasing sequence of measurable sets in \mathbb{R}^n defined by $A_k := \{y \in \mathbb{R}^n : |f(x) - f(y)| < 1/k\}$ s.t. x is a density point of all these sets. Then there exists positive numbers β_1, β_2, \ldots strictly converging to zero s.t. x is a density point of the set

$$A := \bigcup_{n=1}^{\infty} (A_n \setminus B(x, \beta_n)).$$

Let $\{\gamma_k\}_{k\in\mathbb{N}}$ be a sequence of positive numbers less than one converging to zero. For each $k \in \mathbb{N}$ there exists $\delta_k > 0$ s.t. for all $d \in]0, \delta_k[$ we have

$$\frac{m_n(A_k \cap B(x,d))}{m_n(B(x,d))} > 1 - \gamma_k$$

Choose a decreasing sequence $\{d_k\}_{k\in\mathbb{N}}$ convergent to zero s.t. $d_k \in]0, \delta_k[$ for each $k \in \mathbb{N}$. Then for $d_{k+1} \leq d \leq d_k$,

$$\frac{m_n(A \cap B(x,d))}{m_n(B(x,d))} \ge \frac{m_n(A_k \cap B(x,d)) - m_n(B(x,\gamma_k d_{k+1}))}{m_n(B(x,d))}$$
$$= \frac{m_n(A_k \cap B(x,d))}{m_n(B(x,d))} - (\gamma_k d_{k+1}/d)^n > 1 - 2\gamma_k$$

Now letting $d \longrightarrow 0$ shows that

$$\lim_{l \to 0} \frac{m_n(A \cap B(x,d))}{m_n(B(x,d))} = 1$$

as $\gamma_k \longrightarrow 0$ when $d \longrightarrow 0$. This verifies the other direction.

4. Assume first that $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ is Lebesgue measurable. Then by Lusin's theorem there exists a sequence of closed sets $\{F_k\}_{k \in \mathbb{N}} \in \mathbb{R}^n$ s.t. the restriction of f to each F_k is continuous and $m_n(\mathbb{R}^n \setminus F_k) < 1/k$ for each $k \in \mathbb{N}$. Now f is approximately continuous for the set

$$\bigcup_{k\in\mathbb{N}} (F_k \cap D(F_k))$$

where again D(A) is the set of density points of the set A. Suppose then that f is approximately continuous for a.e. $x \in \mathbb{R}^n$. Let $y \in \mathbb{R}$ be arbitrary. Now it suffices to show that the set $B := \{x \in \mathbb{R}^n : f(x) < y\}$ is Lebesgue measurable. Let $C \subset \mathbb{R}^n$ be the set where f is approximately continuous. By Lebesgue density point theorem the set $B \setminus C$ has Lebesgue measure zero and hence it is a Lebesgue measurable set. Since $B = (B \cap C) \cup (B \setminus C)$ it suffices to show that $B \cap C$ is Lebesgue measurable. Let $x \in B \cap C$. Then by approximate continuity we find a Lebesgue measurable set A_x s.t. x is a density point of A_x and $\lim_{z \longrightarrow x, z \in A} f(z) = f(x)$. As f(x) < y we can choose $A_x \subset B$ and also $A_x \subset C$ as $m_n(B \setminus C) = 0$. Thus

$$B \cap C = \bigcup_{x \in B \cap C} A_x,$$

which is Lebesgue measurable by the same argument we used in problem 1. to prove that arbitrary unions belong to the topology τ_d . This completes the proof.