
Real Analysis II
10. exercise set, solutions

1. First note that clearly ∅,Rn ∈ τd. Let A,B ∈ τd. As A and B are Lebesgue measurable
also A ∩B is. We need to check that A ∩B ∈ τd. Let x ∈ A ∩B. Then

mn(A ∩B(x, r)) +mn(B ∩B(x, r))−mn((A ∩B) ∩B(x, r)) ≤ mn(B(x, r))

or equivalently

mn(A ∩B(x, r))

mn(B(x, r))
+
mn(B ∩B(x, r))

mn(B(x, r))
− 1 ≤ mn((A ∩B) ∩B(x, r))

mn(B(x, r))

for all r > 0. Letting r −→ 0 in both sides shows that

lim
r−→0

mn((A ∩B) ∩B(x, r))

mn(B(x, r))
≥ 1

when the limit exists. As the limit is clearly at most one it follows that it must be equal to
one. Therefore A∩B ∈ τd. By iterating this result we get that all finite intersections belong
to τd.

Let now J be an index set. Let {Aj}j∈J ∈ τd and A = ∪j∈JAj . Suppose that A is
bounded. Let ε > 0, Then

B = {B(x, r) : ∃j ∈ J s.t. mn(Aj ∩B(x, r)) > (1− ε)mn(B(x, r))}

satisfies the assumptions of Vitali’s covering theorem. Hence there are disjoint Bi ∈ B, i =
1, 2, . . . , such that mn(Aji ∩Bi) > (1− ε)mn(Bi) for some ji ∈ J and m∗n(A \ ∪∞i=1Bi) = 0.
Let Eε = ∪∞i=1Aji ∩Bi. Then

mn(Eε) =

∞∑
i=1

mn(Aji ∩Bi) ≥
∞∑
i=1

(1− ε)mn(Bi) ≥ (1− ε)m∗n(A),

Since Eε is measurable, m∗n(A) = m∗n(Eε)+m
∗
n(A\Eε) and so m∗n(A\Eε) ≤ εm∗n(A). Hence

we can find measurable sets E1/k ⊂ A, k = 1, 2, . . . such that m∗n(A \ E1/k) ≤ (1/k)m∗n(A).
Then m∗n(A\∪∞i=1E1/k) = 0, which implies that A is measurable. If A is not bounded we can
apply the above to the sets Aj ∩ B(0, k), j ∈ J , k = 1, 2, . . . . Since every point of A clearly
is a density point, we have showed that τd is indeed a topology. �

2. Suppose that f : Rn −→ R is approximately continuous. Let U ⊂ Rn be open. For
every x ∈ f−1(U) there is a measurable set Ax ⊂ Rn such that D(Ax, x) = 1, x ∈ Ax and
f(Ax) ⊂ U . Then by the same argument as in exercise 1, A = ∪x∈f−1(U)Ax ∈ τd. Since
A = f−1(U) it follows that f is continuous in the density topology.

Suppose then that f is continuous in the density topology. Then for every k = 1, 2, . . .
there is Ak ∈ τd such that f(Ak) ⊂ (f(x)− 1/k, f(x) + 1/k). There exist rk > 0 such that

mn(Ak ∩B(x, r)) > (1− 1/k)mn(B(x, r)) for 0 < r < rk.

We can recursively choose 0 < sk < rk such that

mn(Ak ∩B(x, r) \B(x, sk+1)) > (1− 1/k)mn(B(x, r)) for sk < r < rk.

Then A = ∪∞i=1Ak \B(x, sk+1) is a measurable for which D(A, x) = 1 and f(y)→ f(x) when
y → x, y ∈ A. Thus f is approximately continuous at x.
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3. Assume that f : Rn −→ R is approximately continuous at the point x ∈ Rn. Then, in
particular, limy−→x,y∈A f(y) = f(x) where A is a measurable for which D(A, x) = 1. Thus
there exists δ > 0 s.t. |f(x)− f(y)| < ε when y ∈ B(x, δ) ∩A. This gives

lim
r−→0

mn({y ∈ B(x, r) : |f(y)− f(x)| < ε})
mn(B(x, r))

= 1

or

lim
r−→0

mn({y ∈ B(x, r) : |f(y)− f(x)| > ε})
mn(B(x, r))

= 0, (1)

as desired.
For the converse direction suppose that (1) holds and let x ∈ Rn. Let {Ak}k∈N be a

decreasing sequence of measurable sets in Rn defined by Ak := {y ∈ Rn : |f(x)−f(y)| < 1/k}
s.t. x is a density point of all these sets. Then there exists positive numbers β1, β2, ... strictly
converging to zero s.t. x is a density point of the set

A :=

∞⋃
n=1

(An \B(x, βn)).

Let {γk}k∈N be a sequence of positive numbers less than one converging to zero. For each
k ∈ N there exists δk > 0 s.t. for all d ∈]0, δk[ we have

mn(Ak ∩B(x, d))

mn(B(x, d))
> 1− γk.

Choose a decreasing sequence {dk}k∈N convergent to zero s.t. dk ∈]0, δk[ for each k ∈ N.
Then for dk+1 ≤ d ≤ dk,

mn(A ∩B(x, d))

mn(B(x, d))
≥ mn(Ak ∩B(x, d))−mn(B(x, γkdk+1))

mn(B(x, d))

=
mn(Ak ∩B(x, d))

mn(B(x, d))
− (γkdk+1/d)

n > 1− 2γk.

Now letting d −→ 0 shows that

lim
d−→0

mn(A ∩B(x, d))

mn(B(x, d))
= 1

as γk −→ 0 when d −→ 0. This verifies the other direction. �

4. Assume first that f : Rn −→ R is Lebesgue measurable. Then by Lusin’s theorem there
exists a sequence of closed sets {Fk}k∈N ∈ Rn s.t. the restriction of f to each Fk is continuous
and mn(Rn \ Fk) < 1/k for each k ∈ N. Now f is approximately continuous for the set⋃

k∈N
(Fk ∩D(Fk)),

where again D(A) is the set of density points of the set A. Suppose then that f is approxi-
mately continuous for a.e. x ∈ Rn. Let y ∈ R be arbitrary. Now it suffices to show that the set
B := {x ∈ Rn : f(x) < y} is Lebesgue measurable. Let C ⊂ Rn be the set where f is approx-
imately continuous. By Lebesgue density point theorem the set B \C has Lebesgue measure
zero and hence it is a Lebesgue measurable set. Since B = (B∩C)∪(B\C) it suffices to show
that B ∩C is Lebesgue measurable. Let x ∈ B ∩C. Then by approximate continuity we find
a Lebesgue measurable set Ax s.t. x is a density point of Ax and limz−→x,z∈A f(z) = f(x).
As f(x) < y we can choose Ax ⊂ B and also Ax ⊂ C as mn(B \ C) = 0. Thus

B ∩ C =
⋃

x∈B∩C
Ax,
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which is Lebesgue measurable by the same argument we used in problem 1. to prove that
arbitrary unions belong to the topology τd. This completes the proof. �
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