Real Analysis II

1. exercise set, solutions

1. Let $A, B \subset X$ be arbitrary sets s.t. $d(A, B)>0$. To prove that μ is metric, it suffices to show that $\mu(A \cup B)=\mu(A)+\mu(B)$. Let $\varepsilon=d(A, B) / 2$. Let $C=\{x \in X: \operatorname{dist}(x, A)<\varepsilon\}$. Then C is a Borel set since it can be covered with balls $B(a, \varepsilon), a \in A$. Furthermore, $(A \cup B) \cap C=A$ and $(A \cup B) \backslash C=B$, so by Caratheodory's condition

$$
\begin{aligned}
\mu(A \cup B) & =\mu((A \cup B) \cap C)+\mu((A \cup B) \backslash C) \\
& =\mu(A)+\mu(B)
\end{aligned}
$$

as desired.
2. Let us first prove that $f_{\#} \mu$ is an outer measure. We clearly have $f_{\#} \mu(\emptyset)=\mu\left(f^{-1}(\emptyset)\right)=$ $\mu(\emptyset)=0$. Also, if $A \subset \bigcup A_{i}$, then

$$
f_{\#} \mu(A)=\mu\left(f^{-1}(A)\right) \leq \sum_{i=1}^{\infty} \mu\left(f^{-1}\left(A_{i}\right)\right)=\sum_{i=1}^{\infty} f_{\#} \mu\left(A_{i}\right)
$$

since μ is an outer measure and

$$
f^{-1}(A) \subset f^{-1}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\bigcup_{i=1}^{\infty} f^{-1}\left(A_{i}\right)
$$

This shows that $f_{\#} \mu$ is an outer measure.
Next we show that $A \subset Y$ is $f_{\#} \mu$-measurable whenever $f^{-1}(A)$ is μ-measurable. Let $A \subset Y$ be s.t. $f^{-1}(A)$ is μ-measurable. Then for any $B \subset Y$ we have by Caratheodory's condition

$$
\begin{aligned}
f_{\#} \mu(B)=\mu\left(f^{-1}(B)\right) & =\mu\left(f^{-1}(B) \cap f^{-1}(A)\right)+\mu\left(f^{-1}(B) \backslash f^{-1}(A)\right) \\
& =\mu\left(f^{-1}(B \cap A)\right)+\mu\left(f^{-1}(B \backslash A)\right) \\
& =f_{\#} \mu(B \cap A)+f_{\#} \mu(B \backslash A)
\end{aligned}
$$

Hence A is measurable.
Conditions imply that pre-images of Borel sets in Y are Borel in X, so $f_{\#} \mu$ is Borel.
The problem in defining $f^{\#} \nu(A)=\nu(f(A))$ is that we might have $f(A \cap B) \neq f(A) \cap f(B)$, so the above argument does not prove that $f(A) \subset Y$ is $f^{\#} \nu$-measurable whenever A is ν-measurable. Here is an explicit example: let ν be the Lebesgue measure on $[-1,1]$ and $f(x)=x^{2}$. The $f^{\#} \nu([-1,1])=f^{\#} \nu([0,1])=f^{\#} \nu\left([-1,0)=1\right.$, so intervals are not $f^{\#} \nu$ measurable and $f^{\#} \nu$ is not a Borel outer measure.
3. Let

$$
\operatorname{spt}_{1} \mu=X \backslash \bigcup\{V: V \subset X \text { open and } \mu(V)>0\}
$$

and

$$
\operatorname{spt}_{2} \mu=\{x \in X: \mu(B(x, r))>0 \text { for all } r>0\}
$$

Suppose that $x \in \operatorname{spt}_{1} \mu$. If $x \notin \operatorname{spt}_{2} \mu$ then $\mu(B(x, r))=0$ for some $r>0$, which obviously contradicts the definition of $\mathrm{spt}_{1} \mu$. Thus $\mathrm{spt}_{1} \mu \subset \operatorname{spt}_{2} \mu$.

Suppose next that $x \in \operatorname{spt}_{2} \mu$. If $U \subset X$ is open, there exists $r^{\prime}>0$ s.t. $B\left(x, r^{\prime}\right) \subset U$. Then $\mu(U) \geq \mu\left(B\left(x, r^{\prime}\right)>0\right.$ i.e. $x \in \operatorname{spt}_{1} \mu$. Hence $\operatorname{spt}_{2} \mu \subset \operatorname{spt}_{1} \mu$.

Combining these considerations we have $\operatorname{spt}_{1} \mu=\operatorname{spt}_{2} \mu$, as desired.
Let F be the smallest closed set s.t. $\mu(X \backslash F)=0$. Then it follows immediately from the definition of support that $F \subset \operatorname{spt} \mu$.

For the other direction recall that

$$
\operatorname{spt} \mu=\{x \in X: \mu(B(x, r))>0 \text { for all } r>0\}
$$

Since X is separable we can write

$$
X \backslash \operatorname{spt} \mu=\bigcup_{i=1}^{\infty} B\left(x_{i}, r_{i}\right)
$$

where $\mu\left(B\left(x_{i}, r_{i}\right)\right)=0$. Then

$$
0 \leq \mu(X \backslash \operatorname{spt} \mu)=\mu\left(\bigcup_{i=1}^{\infty} B\left(x_{i}, r_{i}\right)\right) \leq \sum_{i=1}^{\infty} \mu\left(B\left(x_{i}, r_{i}\right)=0\right.
$$

so $\operatorname{spt} \mu \subset F$. Hence, $\operatorname{spt} \mu=F$.
Above the separability is needed for $\mu(X \backslash \operatorname{spt} \mu)=0$: let $X=\mathbb{R}$ be equipped with the discrete metric so that all sets open. Then the support of the Lebesgue measure is empty.
4. Let us enumerate the rational numbers $\mathbb{Q}=\left\{q_{1}, q_{2}, \ldots\right\}$. For $A \subset \mathbb{R}$ we define

$$
\mu(A)=\sum_{q_{k} \in A} 2^{-k}
$$

We claim that this is an outer measure satisfying the conditions of the problem. Let us first prove that it is indeed an outer measure. Clearly,

$$
\mu(\emptyset)=\sum_{q_{k} \in \emptyset} 2^{-k}=0
$$

Let $A \subset \bigcup A_{i}$. Then

$$
\mu(A)=\sum_{q_{k} \in A} 2^{-k} \leq \sum_{q_{k} \in \cup A_{i}} 2^{-k}=\sum_{i=1}^{\infty} \sum_{g_{k} \in A_{i}} 2^{-k}=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

so μ is an outer measure.
To prove that μ is Borel we show that any set is measurable. Let $A \subset \mathbb{R}$ and $C \subset \mathbb{R}$ be arbitrary sets. Then every rational number in A belongs to exactly one of the sets $A \cap C$ and $A \backslash C$. Thus

$$
\mu(A)=\sum_{q_{k} \in A} 2^{-k}=\sum_{q_{k} \in A \cap C} 2^{-k}+\sum_{q_{k} \in A \backslash C} 2^{-k}=\mu(A \cap C)+\mu(A \backslash C),
$$

so by Caratheodory's condition C is μ-measurable. Thus μ is Borel.
Finally note that

$$
\mu(\mathbb{R})=\mu(\mathbb{Q})=\sum_{k=1}^{\infty} 2^{-k}=1
$$

Thus μ indeed works.
5. Recall that if X is separable, then $\operatorname{spt} \mu(\mu$ is an outer measure on $X)$ is the smallest closed set F s.t. $\mu(X \backslash F)=0$. Thus

$$
0=f_{\#} \mu\left(Y \backslash \operatorname{spt} f_{\#} \mu\right)=\mu\left(f^{-1}\left(Y \backslash \operatorname{spt} f_{\#} \mu\right)\right)=\mu\left(X \backslash f^{-1}\left(\operatorname{spt} f_{\#} \mu\right)\right)
$$

As f is continuous, $\left.f^{-1}\left(\operatorname{spt} f_{\#} \mu\right)\right)$ is closed and we have $\operatorname{spt} \mu \subset f^{-1}\left(\operatorname{spt} f_{\#} \mu\right)$. It follows that

$$
f(\operatorname{spt} \mu) \subset f\left(f^{-1}\left(\operatorname{spt} f_{\#} \mu\right)\right) \subset \operatorname{spt} f_{\#} \mu
$$

as desired.
Moreover, if $\operatorname{spt} \mu$ is compact, then it follows from the continuity of f that $\mu(\operatorname{spt} \mu)$ is also compact. Then

$$
0 \leq f_{\#} \mu(Y \backslash f(\operatorname{spt} \mu))=\mu\left(f^{-1}(Y \backslash f(\operatorname{spt} \mu))=\mu\left(X \backslash f^{-1}(f(\operatorname{spt} \mu))\right) \leq \mu(X \backslash \operatorname{spt} \mu)=0\right.
$$

Thus $f_{\#} \mu(Y \backslash f(\operatorname{spt} \mu))=0$. Since $f_{\#} \mu\left(Y \backslash \operatorname{spt} f_{\#} \mu\right)=0$ and $\operatorname{spt} f_{\#} \mu$ is the smallest set having this property, it follows that $\operatorname{spt} f_{\#} \mu \subset f(\operatorname{spt} \mu)$. As we have proved that $f(\operatorname{spt} \mu) \subset \operatorname{spt} f_{\#} \mu$ it follows that $f(\operatorname{spt} \mu)=\operatorname{spt} f_{\#} \mu$.

