UH Probability Theory II, Fall 2015, Exercises 11 (2.12.2015)

In all problems the random variables live in the probability space (Ω, \mathcal{F}, P) and $\mathcal{G} \subseteq \mathcal{F}$ is a sub σ -algebra of \mathcal{F} .

1. For $X \in L^1(\Omega, \mathcal{F}, P)$, show that

$$|E_P(X|\mathcal{G})(\omega)| \leq E_P(|X||\mathcal{G})(\omega).$$

2. Let $X, Y \in L^2(\Omega, \mathcal{F}, P)$ and $\mathcal{G} \subseteq \mathcal{F}$ be a sub- σ -algebra. The covariance between the random variables X and Y was defined as

$$\operatorname{Cov}_P(X,Y) = E_P(XY) - E_P(X)E_P(Y)$$

and we define now the conditional covariance between the random variables X and Y given the information in the σ -algebra \mathcal{G} as the random variable

$$\operatorname{Cov}_P(X, Y|\mathcal{G})(\omega) = E_P(XY|\mathcal{G})(\omega) - E_P(X|\mathcal{G})(\omega)E_P(Y|\mathcal{G})(\omega)$$

Prove the following identity:

$$\operatorname{Cov}_P(X,Y) = E_P(\operatorname{Cov}(X,Y|\mathcal{G})) + \operatorname{Cov}_P(E_P(X|\mathcal{G}), E_P(Y|\mathcal{G}))$$

3. On a probability space (Ω, \mathcal{F}, P) , let $A \in \mathcal{F}$ with P(A) > 0. For a random variable $X(\omega) \geq 0$ *P*-a.s., we have defined the (elementary) conditional expectation of X conditioned on the **event** A as the deterministic constant

$$E_P(X|A) = \frac{E_P(X\mathbf{1}_A)}{P(A)}$$

Consider now the sub σ -algebra $\mathcal{G} = \sigma(A) = \{\emptyset, \Omega, A, A^c\} \subseteq \mathcal{F}.$

- (a) Compute the conditional expectation of X conditioned on the σ algebra \mathcal{G} according to the Kolmogorov definition of $E_P(X|\mathcal{G})(\omega)$
- (b) Let $X(\omega)$ be a random variable with cumulative distribution $F_X(t) = P(X \le t)$, and let $Y(\omega) = \mathbf{1}_{(a,b]}(X(\omega))$. Compute the conditional expectation $E_P(X|\mathcal{G})(\omega)$ with respect to the σ -algebra $\mathcal{G} = \sigma(Y)$.
- (c) Let $\tau(\omega) \ge 0$ a non-negative random variable with λ -exponential distribution such that $P_{\lambda}(\tau > s) = \exp(-\lambda s)$, for $s \ge 0$. We can interpret τ as a random time. For $t \ge 0$ compute the conditional expectation $E_P(\tau | \sigma(\tau \wedge t))(\omega)$ where $\tau(\omega) \wedge t = \min\{\tau(\omega), t\}$.

4. Let X_1, \ldots, X_n independent and identically distributed random variables, and $S_n = (X_1 + X_2 + \cdots + X_n)$. Compute $E_P(X_1 | \sigma(S_n))(\omega)$.

Hint: Note that

$$\sum_{k=1}^{n} E_P(X_k | \sigma(S_n))(\omega) = E_P(S_n | \sigma(S_n))(\omega) = S_n(\omega)$$

(why?), justify the equalities and then use symmetry.

5. Let $X, Y \in L^2(\Omega, \mathcal{F}, P)$. Prove the Cauchy-Schwartz inequality for the conditional expectations:

$$\left\{E_P(XY|\mathcal{G})(\omega)\right\}^2 \le E_P(Y^2|\mathcal{G})(\omega)E_P(X^2|\mathcal{G})(\omega)$$

Hint: follow the steps of the proof of the Cauchy-Schwartz inequality for expectation.

6. Prove the following conditional Chebychev inequality: when $X \in L^2(\Omega, \mathcal{F}, P)$ and $Y(\omega)$ is \mathcal{G} -measurable, with $P(Y(\omega) \ge 0) = 1$,

$$P(|X| > Y|\mathcal{G})(\omega) \le \frac{E_P(X^2|\mathcal{G})(\omega)}{Y^2(\omega)}$$
 P-almost surely

P-almost surely. In particular it holds when $Y(\omega)\equiv y>0$ is a deterministic constant.