
UH Probability Theory II, Fall 2015, Exercises 10 (25.11.2015)

1. Let H ⊂ L2(Ω,F , P ) be a closed subspace.

(a) Show that the L2-projection ΠH is a linear operator: when X,Z ∈
L2(P ), a, b ∈ R,

ΠH(aX + bZ) = aΠHX + bΠHZ,

(b) Show that the L2 projection is idempotent : (ΠH)2 = ΠH), mea-
ning that when Y ∈ H, ΠHY = Y ,

(c) Show that the projection does not increase the L2 norm:

‖ X ‖L2(P )≥‖ ΠHX ‖L2(P )

In general these properties characterize projection operators.

The Next exercises are about combining the idea of taking
L2(P )-projections to the linear span subspace of L2(P ) random
variable, together with the integration by parts formula for
Gaussian and Poisson variables we have seen before. I know
they look difficult, but they are not , please try !

We will use in the multivariate case the following extension of the linear
predictor formula from Example 9.1.1. in the lecture notes:

When X(ω) = (X1(ω), . . . , XT (ω)) ∈ L2(Ω,F , P ), then the following
multivariate formula holds: for Y = (Y1, . . . , Yd) is another random
variable in L2(P ), in maxtrix vector notations

Ŷ =

EP (Y ) + (X − EP (X))(EP (X>X)− EP (X)>EP (X))−1
(
EP (XY >)− EP (X)EP (Y >

)
= EP (Y ) + (X − EP (X))Cov(Y, Y )−1Cov(X, Y )

where M−1 denoted the inverse of a matrix M and Cov(X, Y )ij =
E(XiYj)− E(Xi)E(Xj) is the covariance between Xi and Yj,

and Ŷi is the L2(P )-projection of Yi to the linear span of {1, X1, . . . , XY }.

2. Let G(ω) ∼ N(0, 1) be a standard Gaussian variable with probability
density φ(y) = (2π)−1/2 exp

(
−y2/2

)
, and let f(x) be a differentiable

function with EP (f(G)2) <∞ and EP (|f ′(G)|) <∞.
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(a) Show that

f̂(G) = EP (f(G)) + EP (f ′(G))G(ω)

is the best linear approximation of f(G) based on G in least squa-
re sense, meaning that â = EP (f(G)) and b̂ = EP (f ′(G)) are
minimizing the mean square error

EP (
{
f(G)− (a+ bG)

}2)
Hint: the projection on the linear span of {1, G(ω)} and compute
the coefficeints by using the Gaussian integration by parts formula
.

(b) Now we consider the same linear approximation in the multivaria-
te case. Let G(ω) = (G1(ω), . . . , GT (ω)) ∈ RT where the coordi-
nates Gt(ω) are independent and identically distributed standard
Gaussian random variables. Let f : RT → R be differentiable with
EP
(
f(G1, . . . Gn)2

)
<∞ and

EP

(∣∣∣∣ ∂∂xtf(G1, . . . , GT )

∣∣∣∣) <∞

Show that

f̂(G1, . . . , GT ) = EP (f(G1, . . . , GT )) +
T∑
t=1

EP

(
∂

∂xt
f(G1, . . . , GT )

)
Gt

is the best linear approximation of f(G1, . . . , GT ) in the linear
span of {1, G1, . . . , GT}. with coefficients minimizing the mean
square error

EP

({
f(G1, . . . , GT )−

(
c0 +

T∑
t=1

ctGt

)}2)

(c) Next we consider the correlated case: let A = (Ast) be a non-
singular T × T matrix, G = (G1, . . . , GT ) with i.i.d. standard
Gaussian coordinates as before and let X = (X1, . . . , XT ) = AG>

with coordinates

Xs =
T∑
t=1

AstGt
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We have seen that the random vector X is Gaussian with zero
mean and covariance matrix Σ = AA>. Let f(x1, . . . , xT ) be a
differentiable function with

EP (f(X1, . . . , XT )2) <∞

and

EP

(∣∣∣∣ ∂∂xtf(X1, . . . , XT )

∣∣∣∣) <∞

Compute the coefficients of the best linear approximation f̂(X1, . . . , XT )
of f(X1, . . . , XT ) in the linear span of {1, X1, . . . , XT} minimizing
the mean square error

EP

({
f(X1, . . . , XT )−

(
c0 +

T∑
t=1

ctXt

)}2)

3. Let N(ω) be a Poisson(λ) distributed random variable with parameter
λ > 0. where

Pλ
(
N = k

)
= exp(−λ)

λk

k!
for k ∈ N .

and (f(k) : k ∈ N) a sequence with E(f(N)2) <∞.

(a) Show that

f̂(N) = Eλ(f(N)) + Eλ(f(N + 1)− f(N))(N − λ)

is the best linear estimator of f(N) depending on N , with coef-
ficients minimizing the mean square error

EP (
{
f(N)− (a+ bN)

}2)
Hint: Remember the Stein equation for Poisson-λ random va-
riables:

Eλ
(
f(N)N

)
= λEλ

(
f(N + 1)

)
and that Eλ(N) = λ, Eλ(N2) = λ2 + λ.
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(b) Let now Let N(ω) = (N1(ω), . . . , NT (ω)) ∈ NT where the coordi-
nates are Nt(ω) are independent and Poisson(λt) distributed for
t = 1, . . . , T , respectively, with λt > 0 (possibly different).
Let f : NT → [0,+∞) be a function with EP (f(N1, . . . , NT )2) <
∞.
Show that

f̂(N1, . . . , NT ) = EP (f(N1, . . . , NT ))+

T∑
t=1

EP

(
f(N1, . . . , Nt−1, 1 +Nt, Nt+1 . . . , NT )− f(N1, . . . , Nt−1, Nt, Nt+1 . . . , , NT )

)(
Nt − λt)

is the best linear approximation of f(N1, . . . , NT ) in the linear
span of {1, N1, . . . , NT}. with coefficients minimizing the mean
square error

EP

({
f(N1, . . . , NT )−

(
c0 +

T∑
t=1

ctNt

)}2)

4. Let G(ω) be a standard Gaussian random variables.

For f(x) differentiable with derivative satisfying EP (|∂f(G)| ) < ∞,
we define Define the adjoint operator f 7→ ∂∗f with ∂∗f(x) = xf(x)−
∂f(x).

(a) Use the Gaussian integration by parts formula together with the
product rule of calculus

∂(fh) = f∂h+ h∂f

to prove the following extension of the Gaussian integration by
parts formula: when EP (f(G)2) < ∞ and EP (∂f(G)2) < ∞, and
for another differantiable h with EP (∂h(G)2) <∞,

EP (h(G)∂f(G)) = EP (f(G)∂h(G))

∂∗ is the adjoint of the derivative operator ∂ in the space L2(R,F , φ(x)dx),
where the integration measure is the standard Gaussian distribu-
tion on R.

(b) We define the (unnormalized) Hermite polynomials as h0(x) = 1,
and by induction hn(x) = (∂∗n1)(x) = ∂∗nhn−1(x).
Compute the first five hn(x) Hermite polynomials for n = 1, 2, 3, 4, 5.

(c) Show that E(hn(G)) = 0
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(d) Show that E(hn(G), hm(G)) = n!δnm and in particular the random
variables hn(G) and hm(G) are orthogonal in L2(Ω,F , P ) Hint: use
extended Gaussian integration by parts, and that ∂∗ is the adjoint
of the derivative in L2(R,F , φ(x)dx).

5. Let f(x) be a function with n derivatives ∂nf(x), such that EP (∂kf(G)) ∈
L2(Ω,F , P ) for k = 0, 1, 2, . . . , n.

Show that

f̂(G) = EP (G) +
n∑
k=1

EP (∂kf(G))

k!
hk(G)

is the best polynomial approximation of f(G) in the linear span of
{h0(G) = 1, h1(G) = G, . . . , hn(G)} with coefficients minimizing the
least square error

EP

({
f(G)−

( n∑
k=0

ckhn(G)

)}2)

Similar polynomial approximations can be computed in the multiva-
riate case, and also for Poisson random variables, in that case using
some polynomials other than of Hermite polynomials, and also in the
combined case where the linear span contains the polynomials of both
Gaussian and Poisson random variables.

6. We compute linear projections with Bernoulli random variables. Let
X(ω) be a binary random variable with

P (X = 1) = 1− P (X = 0) = p

and p in [0, 1].

(a) Show that then best linear approximation of f(X) for f : {0, 1} →
R in the linear span of {1, X1(ω)} in mean square sense is given
by

f̂(X) = Ep(f(X)) + (f(1)− f(0))(X − p)

where EP (X) = EP (X2) = p.

(b) Actually in this case the approximation is exact: check that f̂(X) =
f(X) !
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(c) For X1(ω), . . . , XT (ω) independent random variables with

P (Xt = 1) = 1− P (Xt = 0) = pt

and pt in [0, 1], and f : {0, 1}T → R, show that best linear ap-
proximation of f(X) in the linear span of {1, X1(ω), . . . , XT (ω)}
in mean square sense is given

f̂(X1, . . . , XT ) = EP (f(X))+

T∑
t=1

EP

(
f(X1, . . . , Xt−1, 1, Xt+1, . . . Xtn)− f(X1, . . . , Xt−1, 0, Xt+1, . . . Xtn)

)
(Xt(ω)− pt)

7. Show that the space L∞(Ω,F , P ) equipped with the essential supre-
mum norm is complete.

‖ X ‖∞= P -esssupω
{
|X(ω)|

}
= inf

{
K ∈ R : P (|X| > K) = 0

}
Hint (Xn ∈ N) ⊂ L∞(P ) is a Cauchy sequence in ‖ · ‖∞ norm if and
only if ∀ε > 0 ∃Nε : ∀n,m ≥ Nε

|Xn(ω)−Xm(ω)| < ε, P -melkein varmasti
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