UH Probability Theory II, exercises 8 , solutions (11.11.2015)

1. Let $X(\omega)$ be a random variable with $P(X \geq 0)=1$.

Show that
(a)

$$
E_{P}(X)=\int_{0}^{\infty} P(X>t) d t=\int_{0}^{\infty} P(X \geq t) d t
$$

Hint: $t=\int_{0}^{\infty} \mathbf{1}(s \leq t) d s$, use Fubini
(b)

$$
E_{P}\left(X^{n}\right)=n \int_{0}^{\infty} X^{n-1} P(X>t) d t, \quad \text { for } n \in \mathbb{N}
$$

## Solution

$$
\begin{aligned}
& E_{P}\left(X^{n}\right)=\int_{0}^{\infty} s^{n} P_{X}(d s)=\int_{0}^{\infty}\left(\int_{0}^{s} n t^{n-1} d t\right) P_{X}(d s) \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} \mathbf{1}(t \leq s) n t^{n-1} d t\right) P_{X}(d s) \\
& \left.\stackrel{(F u b i n i)}{=} n \int_{0}^{\infty}\left(\int_{0}^{\infty} \mathbf{1}(t \leq s) P_{X}(d s)\right) t^{n-1} d t=n \int_{0}^{\infty} \mathbb{P}(X \geq t)\right) t^{n-1} d t= \\
& \left.n \int_{0}^{\infty} \mathbb{P}(X>t)\right) t^{n-1} d t
\end{aligned}
$$

2. Let $G(\omega) \sim \mathcal{N}(0,1)$ be a standard Gaussian random variable, with probability density

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right), \quad x \in \mathbb{R}
$$

Since we know that $E_{P}\left(\exp \left(\lambda G^{2} / 2\right)\right)<\infty \forall \lambda<1$, and when $0<\lambda<$ 1 , for any polynomial $p(x)$, there are constants $C_{1}, C_{2}$ such that

$$
|p(x)| \leq C_{1}+C_{2} \exp \left(\lambda x^{2} / 2\right)
$$

which implies that $E_{P}\left(|G|^{p}\right)<\infty$ and $G \in L^{p}(P)$ for all exponents $p>0$. Note also that the standard Gaussian distribution is symmetric around the origin, with $\phi(x)=\phi(-x)$.
(a) Use symmetry to show that $\forall n \in \mathbb{N}$ we have $E_{P}\left(G^{2 n+1}\right)=0$ for all the odd moments.
Solution

$$
\begin{aligned}
& \int_{R} x^{2 n+1} \phi(x) d x=\int_{-\infty}^{0} x^{2 n+1} \phi(x) d x+\int_{0}^{\infty} x^{2 n+1} \phi(x) d x \\
& =\int_{-\infty}^{0} x^{2 n+1} \phi(-x) d x+\int_{0}^{\infty} x^{2 n+1} \phi(x) d x \\
& =-\int_{0}^{\infty} x^{2 n+1} \phi(x) d x+\int_{0}^{\infty} x^{2 n+1} \phi(x) d x=0
\end{aligned}
$$

where $\int_{0}^{\infty} x^{2 n+1} d x<\infty$ since $E_{P}\left(|G|^{2 n+1}\right)<\infty$.
(b) Compute $E_{P}\left(G^{2}\right)$.

Hint You can use the Gaussian integration by parts formula $E_{P}(f(G) G)=E_{P}\left(f^{\prime}(G)\right)$ after checking the integrability condition. Equivalently you can use the property of the standard Gaussian density $\partial_{x} \phi(x)=-\phi(x) x$ and use the usual integration by parts formula.
Solution For $f(x)=x$ with $f^{\prime}(x)=1$ we obtain $E_{P}\left(G^{2}\right)=$ $E_{P}(G G)=E_{P}(f(G) G)=E_{P}(f \prime(G))=E_{P}(1)=1$.
(c) Use induction to compute the even moments of the standard Gaus$\operatorname{sian} E_{P}\left(G^{2 n}\right)$, for $n \in \mathbb{N}$.
Solution For $f(x)=x^{2 n-1}$ with $f \prime(x)=(2 n-1) x^{2 n-2}$,

$$
\begin{aligned}
& E_{P}\left(G^{2 n}\right)=E_{P}\left(G^{2 n-1} G\right)=E_{P}(f(G) G)=E_{P}(f \prime(G))=(2 n-1) E_{P}\left(G^{2(n-1)}\right)= \\
& (2 n-1)(2 n-3) E_{P}\left(G^{2(n-2)}\right)=\ldots \\
& =(2 n-1) \times(2 n-3) \times(2 n-5) \times \cdots \times 7 \times 5 \times 3 \times 1:=(2 n-1)
\end{aligned}
$$

3. For $t \in \mathbb{R}$ compute the expectations:
(a) $E_{P}(G \mathbf{1}(G>t))$
(b) $E_{P}(G \mathbf{1}(G \leq t))$
(c) $E_{P}\left(G^{2} \mathbf{1}(G>t)\right)$
(d) $E_{P}\left(G^{2} \mathbf{1}(G \leq t)\right)$
(e) $E_{P}\left(G^{3} \mathbf{1}(G>t)\right)$
(f) $E_{P}\left(G^{3} \mathbf{1}(G \leq t)\right)$

Hints: Show you can use the Gaussian integration by part formula $E_{P}(f(G) G)=E_{P}\left(f^{\prime}(G)\right)$ with $f(x)=\mathbf{1}(x>t)$. In this case $f^{\prime}(x)=$ $\delta_{t}(x)=\delta_{0}(x-t)$ is not a function but a generalized function (a distribution in analysis language), the Dirac-delta function at $t$, with the defining property

$$
g(t)=\int_{\mathbb{R}} g(x) \delta_{t}(x) d x=\int_{\mathbb{R}} g(x) \delta_{0}(x-t) d x=\int_{\mathbb{R}} g(y+t) \delta_{0}(y) d y
$$

for any continuous test function $g$ with compact support. From the probabilistic point of view the measure $\mu(d x)=\delta_{t}(x) d x$ is simply the probability measure of a deterministic random variable concentrated in the singleton $\{t\}$.
In order show that the integration by parts formula is correct also in this case, approximate the indicator $f(x)=\mathbf{1}(x>t)$ by the sequence $f_{n}(x)=\left((x-t)^{+} n\right) \wedge 1$ which satisfies $0 \leq f_{n}(x) \leq f(x) \leq 1 \forall x$, and it is piecewise linear with derivative $f_{n}^{\prime}(x)=n \mathbf{1}(t<x \leq t+1 / n)$.
Apply the Gaussian integration by parts to $f_{n}(x)$ and use the dominated convergence Theorem to take limits.
Solution a) Formally for $f(x)=\mathbf{1}(x>t)$ with $f^{\prime}(x)=\delta_{t}(x)$

$$
\begin{aligned}
& E_{P}(G \mathbf{1}(G>t))=E_{P}(G f(G))=E_{P}(f \prime(G))=E_{P}\left(\delta_{t}(G)\right)=\int_{\mathbb{R}} \delta_{t}(x) \phi(x) d x \\
& =\phi(t)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2}\right)
\end{aligned}
$$

However this is a bit suspicious, since $\delta_{t}(x)$ is not a function (it is a generalized function in the sense of distribution). We show that the formula is correct indeed. We just apply the Gaussian integration by parts to $f_{n}(x)$.

$$
E_{P}\left(G f_{n}(G)\right)=E_{P}\left(f_{n}^{\prime}(G)\right)=n P(G \in(t, t+1 / n])=n \int_{t}^{t+1 / n} \phi(x) d x
$$

Note that $\forall \omega \in \Omega, G(\omega) f_{n}(G(\omega)) \rightarrow G(\omega) f(G(\omega))$ and $\mid G(\omega) f_{n}(G(\omega)) \leq$ $|G(\omega)| \in L^{1}(P)$ and by Lebesgue dominated convergence Theorem it follows that

$$
E_{P}\left(G f_{n}(G)\right) \rightarrow E_{P}(G f(G))
$$

on the other hands, since $x \mapsto \phi(x)$ is continuous,

$$
\lim _{n \rightarrow \infty} E_{P}\left(f_{n}^{\prime}(G)\right)=\lim _{n \rightarrow \infty} n \int_{t}^{t+1 / n} \phi(x) d x=\phi(t)=E_{P}\left(\delta_{t}(G)\right)
$$

b) $E_{P}(G \mathbf{1}(G \leq t))=E_{P}(G)-E_{P}(G \mathbf{1}(G>t))=0-\phi(t)$
c) $E_{P}\left(G^{2} \mathbf{1}(G>t)\right)=E_{P}(G G \mathbf{1}(G>t))=E_{P}(G f(G))=E_{P}\left(f^{\prime}(G)\right)$ where $f(x)=x \mathbf{1}(x>t)$ with derivative $\mathbf{1}(x>t)+x \delta_{t}(x)$. giving
$E_{P}\left(G^{2} \mathbf{1}(G>t)\right)=E_{P}(\mathbf{1}(x>t))+E_{P}\left(x \delta_{t}(x)\right)=1-\Phi(t)+t \phi(t)=\Phi(-t)+t \phi(t)$
where $\Phi(t)=\int_{\infty}^{t} \phi(x) d x=P(G \leq t)$ is the cumulative distribution function of the Gaussian distribution. By symmetry $P(G>t)=1-$ $\Phi(t)=P(G \leq-t)=\Phi(-t)$.
d)

$$
E_{P}\left(G^{2} \mathbf{1}(G \leq t)\right)=E_{P}\left(G^{2}\right)-E_{P}\left(G^{2} \mathbf{1}(G>t)\right)=\Phi(t)-t \phi(t)
$$

e)

$$
E_{P}\left(G^{3} \mathbf{1}(G>t)\right)=E_{P}\left(G G^{2} \mathbf{1}(G>t)\right)=E_{P}\left(f^{\prime}(G)\right)
$$

where $f(x)=x^{2} \mathbf{1}(x>t)$ with derivative $2 x \mathbf{1}(x>t)+x^{2} \delta_{t}(x)$

$$
=2 E_{P}(G \mathbf{1}(G>t))+E_{P}\left(G^{2} \delta_{t}(G)\right)=\left(2+t^{2}\right) \phi(t)
$$

f)

$$
E_{P}\left(G^{3} \mathbf{1}(G \leq t)\right)=E_{P}\left(G^{3}\right)-E_{P}\left(G^{2} \mathbf{1}(G>t)\right)=-\left(2+t^{2}\right) \phi(t)
$$

4. ( $\chi_{n}^{2}$ and Dirichlet distributions ) Let $G(\omega)=\left(G_{1}(\omega), \ldots, G_{n}(\omega)\right)$ be independent and identically distributed standard Gaussian random variables, each with probability density $\phi(x)$ on $\mathbb{R}$.
Let

$$
X(\omega)=G_{1}(\omega)^{2}+\cdots+G_{n}(\omega)^{2}, \quad \text { and } \Pi_{k}(\omega)=\frac{G_{k}(\omega)^{2}}{X_{n}(\omega)}, \quad 1 \leq k \leq n
$$

Note that $\Pi_{k}(\omega) \in[0,1]$ and $\sum_{k=1}^{n} \Pi_{k}(\omega)=1$, so that
This means that for each $\omega$, the random vector $\Pi(\omega)=\left(\Pi_{1}(\omega), \ldots, \Pi_{n}(\omega)\right)$ belongs to the simplex

$$
\Delta_{n}=\left\{p=\left(p_{1}, \ldots, p_{n}\right) \in[0,1]^{n}: p_{1}+\cdots+p_{n}=1\right\}
$$

and determines a (random) probability distribution on the discrete set $\{1, \ldots, n\}$. Note also that $\Pi$ is determined by $(n-1)$ coordinates, since $p_{1}=1-\left(p_{2}+\cdots+p_{n}\right)$.

Use the change of variable formula for the bijection $f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}^{n}$ defined as

$$
g=\left(g_{1}, \ldots, g_{n}\right) \mapsto f(g)=\left(\sum_{k=1}^{n} g_{k}^{2}, \frac{g_{2}^{2}}{\sum_{k=1}^{n} g_{k}^{2}}, \ldots, \frac{g_{n}^{2}}{\sum_{k=1}^{n} g_{k}^{2}}\right)
$$

to show that $X$ and $\Pi$ are independent, computing also the probability density of $X$ on $\mathbb{R}^{+}$and probability the density of $\left(\Pi_{2}, \ldots, \Pi_{n}\right)$ on $[0,1]^{n-1}$.
By the way, the distribution of $X$ is called chi-square with $n$-degrees of freedom and it is denoted by $\chi_{n}^{2}$, while the distribution of the random probability vector $\left(\Pi_{1}, \ldots, \Pi_{n}\right)$ is a special case of the Dirichlet distribution, which is used to model random discrete probabilities.

Solution We do this in two stages.
Let $Y_{k}(\omega)=G_{k}(\omega)^{2}$. For $t \geq 0$
$P\left(Y_{k} \leq t\right)=P\left(G_{k}^{2} \leq t\right)=P\left(\left|G_{k}\right| \leq \sqrt{t}\right)=P\left(-\sqrt{t} \leq G_{k} \leq \sqrt{t}\right)=2 \Phi(\sqrt{t})-1$,
where $\Phi(t)=P(G \leq t)$ is the cumulative distribution function of $G$, and the probability density function of $Y_{k}(\omega)$ is given by

$$
\frac{\partial}{\partial t} P\left(Y_{k} \leq t\right)=2 \frac{\partial}{\partial t} \Phi(\sqrt{t})=\phi(\sqrt{t}) t^{-1 / 2}=\frac{1}{\sqrt{2 \pi}} \exp (-t / 2) t^{-1 / 2}
$$

This is the probability density of the so called $\chi_{1}^{2}$ chi-square distribution with 1 degree of freedom.
Since $G_{1}, \ldots, G_{n}$ are $P$-independent implies that also $Y_{1}, \ldots, Y_{n}$ are $P$-independent.
Now $X(\omega)=Y_{1}(\omega)+\cdots+Y_{n}(\omega)$ and $\Pi_{k}(\omega)=Y_{k}(\omega) / X(\omega)$
The map
$\Psi\left(y_{1}, \ldots, y_{n}\right)=\left(x=y_{1}+\cdots+y_{n}, p_{2}=\frac{y_{2}}{y_{1}+\cdots+y_{n}}, \ldots, p_{n}=\frac{y_{n}}{y_{1}+\cdots+y_{n}}\right)$
is a diffeomorphism between $(0, \infty)^{n}$ and the open set

$$
\begin{aligned}
& (0,+\infty) \times\left\{\left(p_{2}, \ldots, p_{n}\right) \in[0,1]^{n-1}:\left(p_{2}+\cdots+p_{n}\right)<1\right\} \\
& J f(g)=\left[\frac{\partial \psi_{i}}{\partial y_{j}}\right]_{i j}= \\
& \frac{1}{\left(y_{1}+\cdots+y_{n}\right)}\left(\begin{array}{cc}
0 & 0 \\
0 & I d_{(n-1) \times(n-1)}
\end{array}\right)-\left(1, \frac{y_{2}}{\left(y_{1}+\cdots+y_{n}\right)}, \ldots, \frac{y_{n}}{\left(y_{1}+\cdots+y_{n}\right)}\right)^{\top}(1,1, \ldots, 1)
\end{aligned}
$$

by using the multilinearity and alternating properties of the determinant, it follows that

$$
\operatorname{det}(J f(g))=\left(y_{1}+\cdots+y_{n}\right)^{-(n-1)}
$$

We obtain the joint density of $\left(X_{1}, \Pi_{2}, \ldots, \Pi_{n}\right)$

$$
\begin{aligned}
& (2 \pi)^{-n / 2} \prod_{k=1}^{n} \exp \left(-\frac{y_{k}}{2}\right) y_{1}^{-1 / 2} y_{2}^{-1 / 2} \ldots y_{n}^{-1 / 2}|\operatorname{det}(J \psi(y))|^{-1} \\
& =(2 \pi)^{-n / 2} \exp \left(-\frac{1}{2} \sum_{k=1}^{d} y_{k}\right)\left(\frac{y_{1}}{x}\right)^{-1 / 2} \ldots\left(\frac{y_{n}}{x}\right)^{-1 / 2} x^{-n / 2} \times x^{d-1}= \\
& (2 \pi)^{-n / 2} \exp (-x / 2) x^{n / 2-1}\left(1-\left(p_{2}+\cdots+p_{n}\right)\right)^{-1 / 2} p_{2}^{1 / 2} \ldots p_{n}^{-1 / 2}
\end{aligned}
$$

with $p_{k}>0$ and $0 \leq p_{2}+\cdots+p_{n} \leq 1$, and $p_{1}=1-\left(p_{2}+\cdots+p_{n}\right)$, and $\left(y_{1}, \ldots, y_{n}\right)=\Psi^{-1}\left(x, p_{2}, \ldots, p_{n}\right)$.

$$
\int_{0}^{\infty} \exp (-x / 2) x^{n / 2-1} d x=2^{n / 2} \int_{0}^{\infty} \exp (-u) u^{n / 2-1} d u=2^{n / 2} \Gamma(n / 2)
$$

where the $\Gamma(z)$ is the Gamma function defined by the integral. Therefore we have the factorization
$\frac{1}{2^{n / 2} \Gamma(n / 2)} \exp (-x / 2) x^{n / 2-1} \times \frac{\Gamma(n / 2)}{\Gamma(1 / 2)^{n}}\left(1-\left(p_{2}+\cdots+p_{n}\right)\right)^{-1 / 2} p_{2}^{-1 / 2} \ldots p_{n}^{-1 / 2}$
where $\Gamma(1 / 2)=\sqrt{\pi}$. This means that $X$ is $\chi_{n}^{2}$ (chi-square distributed with $n$-degrees of freedom) while $\left(\Pi_{1}, \ldots, \Pi_{n}\right)$ is the Dirichlet distributed with parameters $(1 / 2, \ldots, 1 / 2)$ taking values in the simplex $\Delta_{n}$. Note that the distribution of $\left(\Pi_{1}, \Pi_{2}, \ldots, \Pi_{n}\right)$ is degenerate, since $\Pi_{1}=1-\left(\Pi_{2}+\cdots+\Pi_{n}\right)$, it does not have a density with respect to the $n$-dimensional Lebesgue measure. However $\left(\Pi_{2}, \ldots, \Pi_{n}\right)$ has density with respect to the $(n-1)$-dimensional Lebesgue measure.

