
UH Probability Theory II, exercises 8, solutions (11.11.2015)

1. Let X(ω) be a random variable with P (X ≥ 0) = 1.

Show that

(a)

EP (X) =

∫ ∞
0

P (X > t)dt =

∫ ∞
0

P (X ≥ t)dt

Hint: t =
∞∫
0

1(s ≤ t)ds , use Fubini

(b)

EP (Xn) = n

∫ ∞
0

Xn−1P (X > t)dt, for n ∈ N .

Solution

EP (Xn) =

∫ ∞
0

snPX(ds) =

∫ ∞
0

(∫ s

0

ntn−1dt

)
PX(ds)

=

∫ ∞
0

(∫ ∞
0

1(t ≤ s)ntn−1dt

)
PX(ds)

(Fubini)
= n

∫ ∞
0

(∫ ∞
0

1(t ≤ s)PX(ds)

)
tn−1dt = n

∫ ∞
0

P(X ≥ t)

)
tn−1dt =

n

∫ ∞
0

P(X > t)

)
tn−1dt

2. Let G(ω) ∼ N (0, 1) be a standard Gaussian random variable, with
probability density

φ(x) =
1√
2π

exp

(
−x

2

2

)
, x ∈ R

Since we know that EP

(
exp(λG2/2)

)
<∞ ∀λ < 1, and when 0 < λ <

1, for any polynomial p(x), there are constants C1, C2 such that

|p(x)| ≤ C1 + C2 exp(λx2/2)

which implies that EP (|G|p) < ∞ and G ∈ Lp(P ) for all exponents
p > 0. Note also that the standard Gaussian distribution is symmetric
around the origin, with φ(x) = φ(−x).
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(a) Use symmetry to show that ∀n ∈ N we have EP (G2n+1) = 0 for
all the odd moments.
Solution∫

R

x2n+1φ(x)dx =

∫ 0

−∞
x2n+1φ(x)dx+

∫ ∞
0

x2n+1φ(x)dx

=

∫ 0

−∞
x2n+1φ(−x)dx+

∫ ∞
0

x2n+1φ(x)dx

= −
∫ ∞
0

x2n+1φ(x)dx+

∫ ∞
0

x2n+1φ(x)dx = 0

where
∫∞
0
x2n+1dx <∞ since EP (|G|2n+1) <∞.

(b) Compute EP (G2).
Hint You can use the Gaussian integration by parts formula
EP (f(G)G) = EP (f ′(G)) after checking the integrability condi-
tion. Equivalently you can use the property of the standard Gaus-
sian density ∂xφ(x) = −φ(x)x and use the usual integration by
parts formula.
Solution For f(x) = x with f ′(x) = 1 we obtain EP (G2) =
EP (GG) = EP (f(G)G) = EP (f ′(G)) = EP (1) = 1.

(c) Use induction to compute the even moments of the standard Gaus-
sian EP (G2n), for n ∈ N.
Solution For f(x) = x2n−1 with f ′(x) = (2n− 1)x2n−2 ,

EP (G2n) = EP (G2n−1G) = EP (f(G)G) = EP (f ′(G)) = (2n− 1)EP (G2(n−1)) =

(2n− 1)(2n− 3)EP (G2(n−2)) = . . .

= (2n− 1)× (2n− 3)× (2n− 5)× · · · × 7× 5× 3× 1 := (2n− 1)

3. For t ∈ R compute the expectations:

(a) EP

(
G1(G > t)

)
(b) EP

(
G1(G ≤ t)

)
(c) EP

(
G21(G > t)

)
(d) EP

(
G21(G ≤ t)

)
(e) EP

(
G31(G > t)

)
(f) EP

(
G31(G ≤ t)

)
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Hints: Show you can use the Gaussian integration by part formula
EP (f(G)G) = EP (f ′(G)) with f(x) = 1(x > t). In this case f ′(x) =
δt(x) = δ0(x − t) is not a function but a generalized function (a di-
stribution in analysis language), the Dirac-delta function at t, with the
defining property

g(t) =

∫
R
g(x)δt(x)dx =

∫
R
g(x)δ0(x− t)dx =

∫
R
g(y + t)δ0(y)dy

for any continuous test function g with compact support. From the
probabilistic point of view the measure µ(dx) = δt(x)dx is simply the
probability measure of a deterministic random variable concentrated in
the singleton {t}.
In order show that the integration by parts formula is correct also in
this case, approximate the indicator f(x) = 1(x > t) by the sequence
fn(x) =

(
(x − t)+n) ∧ 1 which satisfies 0 ≤ fn(x) ≤ f(x) ≤ 1 ∀x, and

it is piecewise linear with derivative f ′n(x) = n1
(
t < x ≤ t+ 1/n

)
.

Apply the Gaussian integration by parts to fn(x) and use the domina-
ted convergence Theorem to take limits.
Solution a) Formally for f(x) = 1(x > t) with f ′(x) = δt(x)

EP (G1(G > t)) = EP (Gf(G)) = EP (f ′(G)) = EP (δt(G)) =

∫
R
δt(x)φ(x)dx

= φ(t) =
1√
2π

exp
(
−t

2

2

)
However this is a bit suspicious, since δt(x) is not a function (it is a
generalized function in the sense of distribution). We show that the
formula is correct indeed. We just apply the Gaussian integration by
parts to fn(x).

EP (Gfn(G)) = EP (f ′n(G)) = nP
(
G ∈ (t, t+ 1/n]

)
= n

∫ t+1/n

t

φ(x)dx

Note that ∀ω ∈ Ω,G(ω)fn(G(ω))→ G(ω)f(G(ω)) and |G(ω)fn(G(ω)) ≤
|G(ω)| ∈ L1(P ) and by Lebesgue dominated convergence Theorem it
follows that

EP (Gfn(G))→ EP (Gf(G))

on the other hands, since x 7→ φ(x) is continuous,

lim
n→∞

EP (f ′n(G)) = lim
n→∞

n

∫ t+1/n

t

φ(x)dx = φ(t) = EP (δt(G))
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b) EP

(
G1(G ≤ t)

)
= EP (G)− EP

(
G1(G > t)

)
= 0− φ(t)

c) EP

(
G21(G > t)

)
= EP

(
GG1(G > t)

)
= EP

(
Gf(G)

)
= EP

(
f ′(G)

)
where f(x) = x1(x > t) with derivative 1(x > t) + xδt(x). giving

EP

(
G21(G > t)

)
= EP (1(x > t)) + EP

(
xδt(x)

)
= 1− Φ(t) + tφ(t) = Φ(−t) + tφ(t)

where Φ(t) =
∫ t

∞ φ(x)dx = P (G ≤ t) is the cumulative distribution
function of the Gaussian distribution. By symmetry P (G > t) = 1 −
Φ(t) = P (G ≤ −t) = Φ(−t).
d)

EP

(
G21(G ≤ t)

)
= EP (G2)− EP

(
G21(G > t)

)
= Φ(t)− tφ(t)

e)

EP

(
G31(G > t)

)
= EP

(
GG21(G > t)

)
= EP (f ′(G))

where f(x) = x21(x > t) with derivative 2x1(x > t) + x2δt(x)

= 2EP (G1(G > t)) + EP (G2δt(G)) = (2 + t2)φ(t)

f)

EP

(
G31(G ≤ t)

)
= EP (G3)− EP

(
G21(G > t)

)
= −(2 + t2)φ(t)

4. ( χ2
n and Dirichlet distributions ) Let G(ω) = (G1(ω), . . . , Gn(ω)) be

independent and identically distributed standard Gaussian random va-
riables, each with probability density φ(x) on R.
Let

X(ω) = G1(ω)2 + · · ·+Gn(ω)2, and Πk(ω) =
Gk(ω)2

Xn(ω)
, 1 ≤ k ≤ n

Note that Πk(ω) ∈ [0, 1] and
∑n

k=1 Πk(ω) = 1, so that

This means that for each ω, the random vector Π(ω) = (Π1(ω), . . . ,Πn(ω))
belongs to the simplex

∆n =
{
p = (p1, . . . , pn) ∈ [0, 1]n : p1 + · · ·+ pn = 1

}
and determines a (random) probability distribution on the discrete set
{1, . . . , n}. Note also that Π is determined by (n−1) coordinates, since
p1 = 1− (p2 + · · ·+ pn).
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Use the change of variable formula for the bijection f : Rn
+ → Rn

+

defined as

g =
(
g1, . . . , gn

)
7→ f(g) =

( n∑
k=1

g2k,
g22∑n
k=1 g

2
k

, . . . ,
g2n∑n
k=1 g

2
k

)
to show that X and Π are independent, computing also the probability
density of X on R+ and probability the density of (Π2, . . . ,Πn) on
[0, 1]n−1.
By the way, the distribution of X is called chi-square with n-degrees
of freedom and it is denoted by χ2

n, while the distribution of the ran-
dom probability vector (Π1, . . . ,Πn) is a special case of the Dirichlet
distribution, which is used to model random discrete probabilities.
Solution We do this in two stages.
Let Yk(ω) = Gk(ω)2. For t ≥ 0

P (Yk ≤ t) = P (G2
k ≤ t) = P (|Gk| ≤

√
t) = P (−

√
t ≤ Gk ≤

√
t) = 2Φ(

√
t)− 1,

where Φ(t) = P (G ≤ t) is the cumulative distribution function of G,
and the probability density function of Yk(ω) is given by

∂

∂t
P (Yk ≤ t) = 2

∂

∂t
Φ(
√
t) = φ(

√
t)t−1/2 =

1√
2π

exp(−t/2)t−1/2

This is the probability density of the so called χ2
1 chi-square distribution

with 1 degree of freedom.
Since G1, . . . , Gn are P -independent implies that also Y1, . . . , Yn are
P -independent.
Now X(ω) = Y1(ω) + · · ·+ Yn(ω) and Πk(ω) = Yk(ω)/X(ω)

The map

Ψ(y1, . . . , yn) =

(
x = y1 + · · ·+ yn, p2 =

y2
y1 + · · ·+ yn

, . . . , pn =
yn

y1 + · · ·+ yn

)
is a diffeomorphism between (0,∞)n and the open set

(0,+∞)×
{

(p2, . . . , pn) ∈ [0, 1]n−1 : (p2 + · · ·+ pn) < 1
}

.

Jf(g) =

[
∂ψi

∂yj

]
ij

=

1

(y1 + · · ·+ yn)

(
0 0
0 Id(n−1)×(n−1)

)
−
(

1,
y2

(y1 + · · ·+ yn)
, . . . ,

yn
(y1 + · · ·+ yn)

)>
(1, 1, . . . , 1) = (y1 + · · ·+ yn)−(n−1)
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by using the multilinearity and alternating properties of the determi-
nant, it follows that

det(Jf(g)) = (y1 + · · ·+ yn)−(n−1)

We obtain the joint density of (X1,Π2, . . . ,Πn)

(2π)−n/2
n∏

k=1

exp
(
−yk

2

)
y
−1/2
1 y

−1/2
2 . . . y−1/2n

∣∣ det(Jψ(y))
∣∣−1

= (2π)−n/2 exp

(
−1

2

d∑
k=1

yk

)(
y1
x

)−1/2
. . .

(
yn
x

)−1/2
x−n/2 × xd−1 =

(2π)−n/2 exp(−x/2)xn/2−1
(

1− (p2 + · · ·+ pn)

)−1/2
p
1/2
2 . . . p−1/2n

with pk > 0 and 0 ≤ p2 + · · · + pn ≤ 1, and p1 = 1 − (p2 + · · · + pn),
and (y1, . . . , yn) = Ψ−1(x, p2, . . . , pn).∫ ∞

0

exp(−x/2)xn/2−1dx = 2n/2

∫ ∞
0

exp(−u)un/2−1du = 2n/2Γ(n/2)

where the Γ(z) is the Gamma function defined by the integral. There-
fore we have the factorization

1

2n/2Γ(n/2)
exp(−x/2)xn/2−1 × Γ(n/2)

Γ(1/2)n

(
1− (p2 + · · ·+ pn)

)−1/2
p
−1/2
2 . . . p−1/2n

where Γ(1/2) =
√
π. This means that X is χ2

n (chi-square distribu-
ted with n-degrees of freedom) while (Π1, . . . ,Πn) is the Dirichlet di-
stributed with parameters (1/2, . . . , 1/2) taking values in the simplex
∆n. Note that the distribution of (Π1,Π2, . . . ,Πn) is degenerate, since
Π1 = 1 − (Π2 + · · · + Πn), it does not have a density with respect to
the n-dimensional Lebesgue measure. However (Π2, . . . ,Πn) has density
with respect to the (n− 1)-dimensional Lebesgue measure.
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