UH Probability Theory II, exercises 8, solutions (11.11.2015)

1. Let X(w) be a random variable with P(X > 0) = 1.
Show that

(a)

Ep(X) = /OOO P(X > t)dt = /Ooo P(X > t)dt

o0

Hint: t = [ 1(s < t)ds , use Fubini
0
(b)

Ep(X") = n/ X" 1P(X >t)dt, forneN.
0

Solution

Ep(X") / 5" Py (ds) /0 oo( /0 Sntnldt)PX(ds)
/ ( / h Yt 1dt>PX(ds)

(Fubind) ( 1(t<s PX(ds))t”_ldt = n/ P(X > t))t"_ldt =
0

)t” Lat

2. Let G(w) ~ N(0,1) be a standard Gaussian random variable, with
probability density

1 x?
d)(l’) = EGXP(—?>, r€eR

Since we know that Ep (exp AG?/2) ) < ooV <1,and when 0 < \ <
(x)

1, for any polynomial p(x), there are constants C4, Cy such that

p(x)] < Cy + Cyexp(Az?/2)

which implies that Ep(|G|P) < oo and G € LP(P) for all exponents
p > 0. Note also that the standard Gaussian distribution is symmetric
around the origin, with ¢(z) = ¢(—z).
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(a) Use symmetry to show that Vn € N we have Ep(G***!) = 0 for
all the odd moments.

Solution
0 o)
/x2"+1¢(a¢)dx:/ x2”+1¢(a:)da:+/ 2o (x)dw
R —00 0
0 00
—/ x2”+1¢(—w)dw+/ 2" (x)dx
—00 0

__/oox2n+1¢($)d$_|_/oox2n+l¢(x)dx_O
0 0

where [;% 2?""dx < 0o since Ep(|G]*"*!) < oo,

(b) Compute Ep(G?).
Hint You can use the Gaussian integration by parts formula
Ep(f(G)G) = Ep(f'(G)) after checking the integrability condi-
tion. Equivalently you can use the property of the standard Gaus-

sian density 0,¢(z) = —¢(z)x and use the usual integration by
parts formula.

Solution For f(z) = x with f/(z) = 1 we obtain Ep(G?) =
Ep(GG) = Ep(f(G)G) = Ep(f/(G)) = Ep(1) = 1.

(c) Useinduction to compute the even moments of the standard Gaus-
sian Ep(G*), for n € N.

Solution For f(r) = 2?"~! with fr(z) = (2n — 1)z 2% |

Ep(G*") = Ep(G*7'G) = Ep(f(G)G) = Ep(f1(G)) = (20— 1) Ep(G*" ) =
(2n —1)(2n — 3)Ep(G*"=2) = .
=2n—1)x(2n—3)x (2n —5) X -+ x Tx5x3x1:=(2n—1)

3. For t € R compute the expectations:

(a) Ep(G1(G > 1))
(b) Ep(GL(G <1))
(c) Ep(G*1(G > 1))
(d) Ep(G*1(G < 1))
(e) Ep(G°1(G > 1))
(f) Ep(G*1(G < 1))



Hints: Show you can use the Gaussian integration by part formula
Ep(f(G)G) = Ep(f'(G)) with f(x) = 1(z > t). In this case f'(x) =
d¢(z) = do(x — t) is not a function but a generalized function (a di-
stribution in analysis language), the Dirac-delta function at ¢, with the
defining property

o(t) = / 9(2)8,(x)dz = / 9(2)do(z — t)di = / 9y + )s(y)dy

R

for any continuous test function g with compact support. From the
probabilistic point of view the measure pu(dz) = §;(x)dx is simply the
probability measure of a deterministic random variable concentrated in
the singleton {t}.

In order show that the integration by parts formula is correct also in
this case, approximate the indicator f(z) = 1(x > t) by the sequence
fa(z) = ((x — ¢)™n) A 1 which satisfies 0 < f,(z) < f(z) < 1 Vz, and
it is piecewise linear with derivative f,(z) =nl(t <z <t+ 1/n).

Apply the Gaussian integration by parts to f,(x) and use the domina-
ted convergence Theorem to take limits.

Solution a) Formally for f(z) = 1(xz > t) with f'(z) = §:(x)

Ep(G1(G > 1)) = Ep(Gf(G)) = Ep(f/(G)) = Ep(0:(G)) = | di(x)¢(z)dz
R
1 t?
=o(t) = exp(——
However this is a bit suspicious, since &;(z) is not a function (it is a
generalized function in the sense of distribution). We show that the

formula is correct indeed. We just apply the Gaussian integration by
parts to f,(z).

t+1/n
Er(GEG)) = Er(fi(@) = nP(G € (tt+1/n) =n [ ola)ts

Note that Vw € Q, G(w) fn(G(w)) = G(w) f(G(w)) and |G (w) fu(G(w)) <
|G(w)| € L'(P) and by Lebesgue dominated convergence Theorem it
follows that

Ep(Gfa(G)) = Ep(Gf(G))

on the other hands, since z — ¢(x) is continuous,

n—oo n—o0

t+1/n
lim Ep(f,(G)) = lim n / o)dx = B(t) = Ep(6,(G))



C) EP(GQ]_(G > t)) EP(GG]_(G > t ) ( )) Ep(f/ )
where f(z) = z1(z > t) with derivative 1(x > t) + 26;(z). giving

Ep(G°1(G > t)) = Ep(L(z > t)) + Ep(x6:(x)) =1 — O(t) + to(t) = O(—t) + té(t)

where ®(t) = foto ¢(z)dr = P(G < t) is the cumulative distribution
function of the Gaussian distribution. By symmetry P(G > t) = 1 —
O(t) = P(G < —t) = O(—t).

)

Ep(G°1(G < t)) = Ep(G®) — Ep(G°1(G > t)) = ®(t) — to(t)

Ep(G*1(G > t)) = Ep(GG*1(G > t)) = Ep(f'(G))
where f(z) = 2°1(z > t) with derivative 2z1(z > t) + z%5;(z)

= 2Bp(G1(G > 1) + Ep(G26(G)) = (2 + 2)o(1)

Ep(G°1(G <t)) = Ep(G®) — Ep(G°1(G > 1)) = —(2+ 1*)¢(t)

. ( X2 and Dirichlet distributions ) Let G(w) = (G1(w),...,Gp(w)) be
independent and identically distributed standard Gaussian random va-
riables, each with probability density ¢(z) on R.

Let
Gr(w)?

X(w) =G (w)?+ -+ Gp(w)? and Hi(w) =

Note that Iy (w) € [0,1] and >_;_, Ix(w) = 1, so that

This means that for each w, the random vector II(w) = (II; (w), . .., II,,(w))
belongs to the simplex

An:{p:(pla7pn)€[0a1]npl++pn:1}

and determines a (random) probability distribution on the discrete set
{1,...,n}. Note also that II is determined by (n — 1) coordinates, since

pr=1—(pa+--+0pn).



Use the change of variable formula for the bijection f : R} — R%
defined as

2
9n
0= o) = 10 = (Lot ot )

to show that X and II are independent, computing also the probability
density of X on R* and probability the density of (Ily,...,II,) on
[0, 1]

By the way, the distribution of X is called chi-square with n-degrees
of freedom and it is denoted by x?2, while the distribution of the ran-
dom probability vector (IIy,...,II,) is a special case of the Dirichlet
distribution, which is used to model random discrete probabilities.

Solution We do this in two stages.
Let Yi(w) = Gi(w)?. For t >0

P(Yi <t) = P(Gy <t) = P(IGi| < V1) = P(= Vt < Gp < V1) = 20(VH) — 1,

where ®(¢t) = P(G < t) is the cumulative distribution function of G,
and the probability density function of Y;(w) is given by

0 0 ~1/2 _
5 P <) = 2§<I>(\/¥)=¢(\/¥)t /2 =

1
exp(—t/2)t~1/?
m

This is the probability density of the so called x? chi-square distribution
with 1 degree of freedom.

Since Gy,...,G, are P-independent implies that also Yi,... Y, are
P-independent.

Now X (w) =Yi(w)+ -+ Y, (w) and T (w) = Yy (w)/ X (w)
The map

Y2 Yn
Uy, .ootn) = (T =14+ Ynpp= ——————, pp= —————
(1,5 Yn) ( Y YnoP2 = e y1+---+yn)

is a diffeomorphism between (0, 00)™ and the open set

(0,400) x {(p2,...,pn) €[0,1]" s (p2+ -+ +pn) <1}

Jf(g) = {

3%} B
9y; 14

0 0

.
1 ( )_(1 Yo Yn ) (L1
(it +ya) \O Ldn-1)x(n-1) Tyt ye) T Tty
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by using the multilinearity and alternating properties of the determi-
nant, it follows that

det(Jf(g)) = (g1 + - +yn) "V

We obtain the joint density of (Xi, I, ..., IL,)

2m) " [Texp(=5)u 2y det(To())|
k=1

1 i\ V2 u\ "
= (27) "2 exp (—5 Zyk) (—) (—”) 7% gt =
T T
k=1

~1/2
(27?)’”/2 exp(—:zc/Z):z:‘"/Q*1 (1 —(pa+---+ pn)) pé/z .. .p;l/Q

\o}

with py >0and 0 < py+---+p, < 1l,and py =1 — (p2+ - + pn),
and (y17"'7yn):\Ij_1<x7p27"'7pn)-

/ exp(—z/2)a™* Lde = 2”/2/ exp(—u)u™?tdu = 2"°T'(n/2)
0 0

where the I'(2) is the Gamma function defined by the integral. There-
fore we have the factorization

1 I'(n/2 —1/2 B
—eXp(—fL'/Q):ﬂn/Q—l % (n/ ) (1 _ (p2_|_..._|_pn)) ;s 1/2.”

2721 (n /2) r(/2)r

where T'(1/2) = /7. This means that X is x? (chi-square distribu-
ted with n-degrees of freedom) while (IIy,...,II,) is the Dirichlet di-
stributed with parameters (1/2,...,1/2) taking values in the simplex
A,. Note that the distribution of (II;,IIs, ..., II,) is degenerate, since
I, =1— (Il 4+ --- + II,,), it does not have a density with respect to
the n-dimensional Lebesgue measure. However (Ily, . .., II,,) has density
with respect to the (n — 1)-dimensional Lebesgue measure.

—-1/2



