
UH Probability Theory II, exam Solutions (7.13.2016)
You can choose whether to write the exam in English or in Finnish, the

Finnish version of the same exam is also available! The duration of the exam
is 3 hours and 30 minutes. In the problems, all random variables are defined
on a probability space (Ω,F , P ).

1. Show that for a random variable X with X(ω) ≥ 0 P -almost surely,
we have ∫ ∞

0

EP (X ∧ t2)
t2

dt = 2E
(√

X
)

where x ∧ t = min{x, t}. Hint:Use Fubini theorem.

Solution Let F (t) = P (X ≤ t) be the cumulative distribution function
of the random variable X.∫ ∞

0

EP (X ∧ t2)
t2

dt =

∫ ∞
0

∫ ∞
0

(x ∧ t2)F (dx)t−2dt =

=

∫ ∞
0

∫ t2

0

xF (dx)t−2dt+

∫ ∞
0

∫ ∞
t2

t2F (dx)t−2dt = Fubini

=

∫ ∞
0

∫ ∞
√
x

t−2dtxF (dx) +

∫ ∞
0

P (X > t2)dt

=

∫ ∞
0

x−1/2xF (dx) +

∫ ∞
0

P (
√
X > t)dt

=

∫ ∞
0

x−1/2F (dx) + EP (
√
X) = 2EP (

√
X)

2. Let X(ω) be a random variable, with X(ω) > 0 (strictly) P -almost
surely. Show that

EP
(
1/X

)
≥ 1/EP (X), EP (log(X)) ≤ logEP (X), EP (X log(X)) ≥ EP (X) logEP (X).

Hint: which of the functions 1
x
, log(x), x log(x) is convex and which is

concave ?

Solution Recall Jensen inequality: if EP (|X|) < ∞ and f(x) is con-
vex,

EP (f(X)) ≥ f(EP (X))

If f(x) is concave on the support of the probability distribution of X,
then x 7→ −f(x) is convex, and we get

−EP (f(X)) ≥ −f(EP (X)), which means EP (f(X)) ≤ f(EP (X)).
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A twice differentiable function f : R → R is convex if and only if
f ′′(x) ≥ 0 ∀x and it is concave if and only if f ′′(x) ≤ 0 ∀x.
Now we see that f(x) = 1/x is convex on [0,∞) since f ′′(x) = 2x−3 ≥ 0,
log(x) is concave on [0,∞) since f ′′(x) = −x−2 ≤ 0 and f(x) = x log(x)
is convex on [0,∞) since f ′′(x) = x−1 ≥ 0.

3. Consider a sequence of independent and identically distributed random
variables (Xn(ω) : n ∈ N), satisfying Xn(ω) ≥ 0 P -almosty surely and
EP (X1) = 1. We also assume that P (Xn = 1) < 1 strictly. In such
case necessarily P (Xn > 1) > 0 and P (Xn < 1) > 0.

Let Zn(ω) =
n∏
i=1

Xi(ω).

(a) Show that Zn ∈ L1(P ) and EP (Zn) = 1.
Solution By P -independence

EP (Zn) = EP (X1X2 . . . Xn) = EP (X1)EP (X2) . . . EP (Xn) = 1n = 1

(b) Show that
√
Zn ∈ L1(P ) and EP (

√
Zn) < 1 strictly.

Solution The function f(x) =
√
x is strictly concave on (0,∞),

Since f ′′(x) = −x−3/2/4 < 0, the Jensen inequality (for concave
function) holds strictly

EP (
√
Xn) <

√
EP (Xn) =

√
1 = 1

and

EP (
√
Zn) = EP (

√
X1X2 . . . Xn) =

EP (
√
X1)EP (

√
X2) . . . EP (

√
Xn) = EP (

√
X1)

n → 0

as n→∞, since EP (
√
X1) < 1.

(c) Use Chebychev inequality to show that Zn
P→ 0 in probability.

Hint: this is equivalent to show that
√
Zn

P→ 0 in probability.
Solution ∀η > 0

P (Zn > η) = P (
√
Zn >

√
η) ≤ EP (

√
Zn)

√
η

=
EP (
√
X1)

n

√
η

→ 0

as n→∞. By definition, it means that Zn
P→ 0 in probability.
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(d) Show that limn→∞ Zn(ω) = 0 P -almost surely.
Hint: Use Chebychev inequality and Borel Cantelli lemma to show
that for any fixed η > 0,

P
(
Zn ≥ η infinitely often

)
= 0,

equivalently, P
(√

Zn ≥
√
η infinitely often

)
= 0

Solution For any η > 0, let An =
{
ω :
√
Zn >

√
η
}
.∑

n∈N

P (An) ≤ η−1/2
∞∑
n=0

EP (
√
X1)

n =
1

(1− EP (
√
X1))
√
η
<∞

and the Borel Cantelli lemma implies that

P
(
lim supAn

)
= P

(
Zn > η infinitely often

)
= 0,

Therefore since countable union of P -null events has zero proba-
bility, by the definition of lim sup

P

(⋃
m∈N

⋂
k∈N

⋃
n≥k

{
Zn > 1/m

})
= 0,

and for the complement evant

P

(⋂
m∈N

⋃
k∈N

⋂
n≥k

{
Zn ≤ 1/m

})
= 1,

which means that limn→∞ Zn(ω) = 0 P -almost surely.
(e) Write the definition of uniform integrability for a sequence of ran-

dom variables and show that the sequence (Zn : n ∈ N) is not
uniformly integrable.
Solution By definition a sequence (Xn(ω) : n ∈ N) ⊂ L1(P ) is
uniformly integrable if and only if

lim
K→∞

sup
n∈N

EP
(
|Xn|1(|Xn| > K)

)
= 0.

Note that we have EP (Zn) ≡ 1 ∀n ∈ N, but Zn(ω)→ 0 P -almost
surely. This is in contradiction with uniform integrability, since
for an uniformly integrable sequence Xn with Xn(ω) → X(ω) P -
almost surely we always have

lim
n→∞

EP (Xn) = EP (lim
n
Xn) = EP (X) .
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4. Let (Gi(ω) : i ∈ N) be a sequence of independent and identically
distributed standard Gaussian random variables, with EP (Gi) = 0
and EP (G2

n) = 1, with moment generating function EP
(
exp(tGi)

)
=

exp(t2/2), for t ∈ R.
Let

Zn(ω, t) = exp

(
θ

n∑
i=1

Gi(ω)

)
,

and let τ(ω) be an independent Poisson(λ) random variable, with pa-
rameter λ > 0, such that

P (τ = k) = exp(−λ)
λk

k
, k ∈ N

Recall that the moment generating function of the Poisson(λ) distribu-
tion is given by EP (exp(rτ)) = exp

(
λ
(
er − 1)

)
for r ∈ R.

Consider the random variable

Zτ (ω) = exp

(
t

τ(ω)∑
i=1

Gi(ω)

)
(a) Write the definition of conditional expectation.

Solution Check the lecture notes or a book.

(b) Compute the conditional expectation

EP (Zτ | σ(Gi : i ∈ N))(ω)

Solution Since τ and (Gi : i ∈ N) are P -independent, we compute
this conditional expectation by fixing the values of the Gi and
integrating out τ under the Poisson(λ) measure.

EP (Zτ | σ(Gi : i ∈ N))(ω) = e−λ
∞∑
k=0

λk

k!
exp

(
t

k∑
i=1

Gi(ω)

)
(c) For n fixed, compute the conditional expectation

E(Zτ | σ(Gi : i ≤ n))(ω)

SolutionSince τ and (Gi : i ∈ N) are P -independent, and the Gi

variables are mutually independent we compute this conditional
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expectation by fixing the values of the Gi for i = 1, . . . , n and
integrating out τ and (Gi : i > n) under the product of standard
Gaussian probability measures:

E(Zτ | σ(Gi : i ≤ n))(ω) = e−λ
∞∑
k=0

λk

k!
exp

(
t

n∧k∑
i=1

Gi(ω)

)
EP (exp(tGi))

k−(n∧k)

= e−λ
∞∑
k=0

λk

k!
exp

(
t

n∧k∑
i=1

Gi(ω)

)
exp
(
t2
(
k − (n ∧ k)

)
/2
)

(d) Compute the conditional expectation

E(Zτ |σ(τ))(ω)

Solution Since τ and (Gi : i ∈ N) are P -independent, and the Gi

variables are mutually independent we compute this conditional
expectation by fixing the values of τ(ω) and integrating out τ and
(Gi : i ∈ N) under the product of standard Gaussian probability
measures.

E(Zτ |σ(τ))(ω) = EP

(
exp

(
t

k∑
i=1

Gi(ω)

))∣∣∣∣
k=τ(ω)

= exp
(
τ(ω)t2/2

)
(e) Compute the expectation E(Zτ ). Solution Since the expectation

of the conditional expectation is the expectation of the random
variable,

EP (Zτ ) = EP

(
E(Zτ |σ(τ))

)
= EP

(
exp
(
τθ
))

where θ = t2/2, which gives

EP (Zτ ) = exp

(
λ(et

2/2 − 1)

)
Hint: remember that if X is P -independent from the sub σ-
algebra G and Y is a G-measurable random variable, for every
non-negative measurable test function f(x, y) we have

EP
(
f(X, Y )|G)(ω) = EP

(
f(X, y)

)∣∣∣∣
y=Y (ω)

5


