UH Probability Theory II, Fall 2015, Exercises 12 (9.12.2015)
In all problems the random variables live in the probability space (Ω, \mathcal{F}, P) and $\mathcal{G} \subseteq \mathcal{F}$ is a sub σ-algebra of \mathcal{F}.

1. Consider random variables $X(\omega), Y(\omega), Z(\omega) \in L^{2}(\Omega, \mathcal{F}, P)$. Let $H=\{a(Y)+b(Y) Z: a, b$ Borel mitalliset funktiot $\} \cap L_{2}(\Omega, \sigma(Y, Z), P)$ H contains the square-integrable and $\sigma(Z, Y)$ measurable random variables which are linear functions of $Z(\omega)$ with $\sigma(Y)$-measurable coefficients.

- Show that

$$
\hat{X}(\omega)=E_{P}(X \mid \sigma(Y))+\left(Z(\omega)-E_{P}(Z \mid \sigma(Y))(\omega)\right) \frac{\operatorname{Cov}_{P}(X Z \mid \sigma(Y))(\omega)}{\operatorname{Var}_{P}\left(Z^{2} \mid \sigma(Y)\right)(\omega)}
$$

is the orthogonal projection of a random variable $X \in L^{2}(\Omega, \mathcal{F}, P)$ into the subspace H.

- Compute the conditional mean square error $E_{P}\left((\hat{X}-X)^{2} \mid \sigma(Z, Y)\right)(\omega)$.
- Compute the conditional mean square error $E_{P}\left((\hat{X}-X)^{2} \mid \sigma(Y)\right)(\omega)$.
- Compute the conditional mean square error $E_{P}\left((\hat{X}-X)^{2}\right)$.
- Let $V(\omega)=E_{P}(X \mid \sigma(Z, Y))(\omega)$. Show that

$$
\begin{aligned}
& E_{P}\left((V-X)^{2} \mid \sigma(Y, Z)\right)(\omega) \leq E_{P}\left((\hat{X}-X)^{2} \mid \sigma(Y, Z)\right)(\omega) \\
& E_{P}\left((V-X)^{2} \mid \sigma(Y)\right)(\omega) \leq E_{P}\left((\hat{X}-X)^{2} \mid \sigma(Y)\right)(\omega) \\
& E_{P}\left((V-X)^{2}\right) \leq E_{P}\left((\hat{X}-X)^{2}\right)
\end{aligned}
$$

2. On a probability space (Ω, \mathcal{F}, P), let $N(\omega)$ be a random variable with geometric distribution
such that $P(N=k)=(1-p)^{k-1} p$ kun $k \in \mathbb{N}$, with parameter $p \in(0,1)$, and let $\left\{X_{k}(\omega): k \in \mathbb{N}\right\}$ a sequence of P-independent and identically distributed standard Gaussian random variables.

Recall that the σ-algebra generated by the random variables $\left\{X_{j}(\omega)\right\}_{j \in \mathcal{J}}$ denoted by

$$
\sigma\left(X_{j}(\omega): j \in \mathcal{J}\right)
$$

is the smallest σ-algebra containing the events

$$
\left\{\omega:\left(X_{j_{1}}(\omega), X_{j_{2}}(\omega), \ldots, X_{j_{n}}(\omega)\right) \in B_{n}\right\}
$$

where $n \in \mathbb{N},\left\{j_{1}, \ldots j_{n}\right\} \subseteq \mathcal{J}$ is a finite subset of indexes and $B_{n} \in$ $\mathcal{B}\left(\mathbb{R}^{n}\right)$ is a Borel set.

Let

$$
Y(\omega):=\sum_{k=1}^{N(\omega)} X_{k}(\omega)=\sum_{k=1}^{\infty} X_{k}(\omega) \mathbf{1}(k \leq N(\omega))
$$

(a) Show that $Y(\omega)$ is a random variable.
(b) Conmpute the conditional expectations

$$
E_{P}(Y \mid \sigma(N))(\omega) \quad \text { ja } \quad E_{P}\left(Y \mid \sigma\left(X_{k}: k \in \mathbb{N}\right)\right)(\omega)
$$

and show that they are square integrable under P.
(c) Compute the conditional expectatations

$$
E_{P}\left(Y^{2} \mid \sigma(N)\right)(\omega) \quad \text { ja } \quad E_{P}\left(Y^{2} \mid \sigma\left(X_{k}: k \in \mathbb{N}\right)\right)(\omega)
$$

and show that they are integrable w.r.t. P.
(d) Compute the expectations $E_{P}(Y), E_{P}\left(Y^{2}\right)$.
3. We construct Markov chain $\left(X_{t}(\omega): t \in \mathbb{N}\right)$ taking values in \mathbb{R}^{d} with initial probability distribution $P\left(X_{0} \in B\right)=\pi(B)$ and transition kernels $K_{t}(B, x)$, where $B \in \mathcal{B}\left(\mathbb{R}^{d}\right), x \in \mathbb{R}^{d}$ and $t \in \mathbb{N}$, meaning that the map $B \mapsto K_{t}(B, x)$ is a probability measure for each x, t fixed, and the map $x \mapsto K_{t}(B, x)$ is Borel-measurable for each B, t fixed.
It means that $\forall t, B_{0}, B_{1}, \ldots, B_{t} \in \mathcal{B}\left(\mathbb{R}^{d}\right)$

$$
\begin{aligned}
& P\left(X_{0} \in B_{0}, X_{1} \in B_{1}, \ldots, X_{t} \in B_{t}\right)= \\
& \int_{B_{0}} \int_{B_{1}} \int_{B_{2}} \ldots \int_{B_{t}} K_{t}\left(d x_{t}, x_{t-1}\right) \ldots K_{2}\left(d x_{2}, x_{1}\right) K_{1}\left(d x_{1}, x_{0}\right) \pi\left(d x_{0}\right)
\end{aligned}
$$

(a) Check that Kolmogorov extension theorem implies the existence of such stochastic process.
(b) Define the operators $K_{t}, t \in \mathbb{N}$ operating on measurable functions with

$$
\left(K_{t} f\right)(x)=\int_{\mathbb{R}^{d}} f(y) K_{t}(y, d x):=E_{x}\left(f\left(X_{1}\right)\right)
$$

Show that when $f(x)$ is bounded and measurable, the stochastic process defined by $M_{0}(f)=0$, and

$$
M_{t}(f)=\sum_{s=1}^{t}\left(f\left(X_{s}\right)-\left(K_{s} f\right)\left(X_{s-1}\right)\right)
$$

is a P-martingale in the filtration $\left.\mathbb{F}=\left(\mathcal{F}_{t}: t \in \mathbb{N}\right\}\right)$ where $\mathcal{F}_{t}=\sigma\left(X_{s}: s=0,1, \ldots, t\right)$.
(c) Compute the Doob martingale decomposition

$$
f\left(X_{t}\right)=f\left(X_{0}\right)+M_{t}(f)+A_{t}(f)
$$

where $A_{t}(f)$ is predictable w.r.t. the filtration \mathbb{F}, meaning that $\forall t \in \mathbb{N}, A_{t}(f)$ is \mathcal{F}_{t-1}-measurable.
(d) Let $\left(G_{t}: t \in \mathbb{N}\right)$ independent and identically distributed Gaussian random variables, and let $X_{0}=0, X_{t}=G_{1}^{2}+G_{2}^{2}+\cdots+G_{t}^{2}$.
Find the transition kernels of X_{t} as the regular transition version of the conditional probabilities

$$
P\left(X_{t} \in B \mid \sigma\left(X_{t-1}\right)(\omega)=K_{t}\left(X_{t-1}(\omega), B\right)\right.
$$

(e) Compute the Doob martingale decomposition of $\left(X_{t}\right)$ in the filtration $\left.\mathbb{F}=\left(\mathcal{F}_{t}: t \in \mathbb{N}\right\}\right)$ where $\mathcal{F}_{t}=\sigma\left(X_{s}: s=0,1, \ldots, t\right)$.
(f) Compute the Doob martingale decomposition of $Y_{t}=\sqrt{X_{t}}$ in the filtration $\left.\mathbb{F}=\left(\mathcal{F}_{t}: t \in \mathbb{N}\right\}\right)$ where $\mathcal{F}_{t}=\sigma\left(X_{s}: s=0,1, \ldots, t\right)$.
(g) Compute the Doob martingale decomposition of X_{t} and $Y_{t}=\sqrt{X_{t}}$ also the larger filtration $\left.\widetilde{\mathbb{F}}=\left(\widetilde{\mathcal{F}}_{t}: t \in \mathbb{N}\right\}\right)$ where $\widetilde{\mathcal{F}}_{t}=\sigma\left(G_{s}\right.$: $s=0,1, \ldots, t) \supset \sigma\left(X_{s}: s=0,1, \ldots, t\right)$.
4. Prove Fatou lemma for the conditional exprctation: if $0 \leq X_{n}(\omega), \forall n \in$ $\mathbb{N} P$-almost surely

$$
0 \leq E_{P}\left(\liminf X_{n} \mid \mathcal{G}\right)(\omega)=\lim \inf _{n} E_{P}\left(X_{n} \mid \mathcal{G}\right)(\omega)
$$

Hint: use the monotone convergence theorem for the conditional expectation.
5. Let $X(\omega)$ and $Y(\omega) P$-independent and uniformly distributed on $[0,1]$, meaning that

$$
P(X \in d x, Y \in d y)=\mathbf{1}_{[0,1]}(x) \mathbf{1}_{[0,1]}(y) d x d y
$$

Let $Z(\omega)=\min (X(\omega), Y(\omega))$ and $I(\omega)=\mathbf{1}(X(\omega) \leq Y(\omega))$
(a) Compute $P(X>Y)$.
(b) Compute the "elementary" conditional expectation conditioned to a P-positive event

$$
E_{P}(X \mid X>Y)
$$

(c) Compute the conditional expectation

$$
E_{P}(X \mid \sigma(I))(\omega)
$$

(d) Compute the conditional expectation $E_{P}(X \mid \sigma(Z), I)(\omega)$.

Hint Since

$$
Z(\omega) \mathbf{1}(X(\omega)>Y(\omega))=Y(\omega) \mathbf{1}(X(\omega)>Y(\omega))
$$

you can check by the Kolmogorov definition of conditional expectation that

$$
\begin{aligned}
& E_{P}(X \mid \sigma(Z), \sigma(I))(\omega) \mathbf{1}(X(\omega)>Y(\omega)) \\
& =E_{P}(X \mid \sigma(Y), \sigma(I))(\omega) \mathbf{1}(X(\omega)>Y(\omega)) \\
& =\frac{E_{P}(X \mathbf{1}(X>Y) \mid \sigma(Y))}{P(X>Y \mid \sigma(Y))(\omega)} \mathbf{1}(X(\omega)>Y(\omega))
\end{aligned}
$$

Recall that for P-independent random variables X and Y

$$
E_{P}(f(X, Y) \mid \sigma(Y))(\omega)=\left.E_{P}(f(X, y))\right|_{y=Y(\omega)}
$$

Hint compute first $E_{P}(X \mid \sigma(Z, I))$, with $I(\omega):=\mathbf{1}(X(\omega) \leq Y(\omega))$ knowing that $\sigma(Z, I) \supseteq \sigma(Z)$.

$$
E_{P}(Z \mid \sigma(Z))=E_{P}\left(E_{P}(X \mid \sigma(Z, I)) \mid \sigma(Z)\right)
$$

