
HU, Probability Theory Fall 2015, Problems 7 (28.10.2015)
In the problems all random variables live in a probability space (Ω,F , P ).

1. On a probability space (Ω,F , P ),

let (Xn(ω) : n ∈ N) be a sequence of exponential random variables such
that

P
(
X1 > t1, . . . , Xn > tn

)
= exp

(
−λ

n∑
i=1

ti

)
∀n ∈ N, t1, . . . , tn ≥ 0,

where λ > 0 is a parameter.

(a) Show that the random variables (Xn(ω) : n ∈ N) are independent
under P .
Solution

P
(
X1 > t1, . . . , Xn > tn

)
= exp

(
−λ

n∑
i=1

ti

)
=

n∏
i=1

exp

(
−λti

)
=

n∏
i=1

P
(
Xi > ti

)
∀n ∈ N, t1, . . . , tn ≥ 0,

and since the collection of rectangles

I =

{
(t1, 1]× (t2, 1]× · · · × (tn, 1] : ti ∈ [0, 1]

}
form a π-system (closed under intersections) which generate the
borel σ-algebra B([0, 1]n) = B([0, 1])⊗n, by Dynkin lemma on
uniqueness of probability measures,

P
(
X1 ∈ B1, . . . , Xn ∈ Bn

)
=

n∏
i=1

P
(
Xi ∈ Bi

)
∀Bi ∈ B([0, 1]), 1 ≤ i ≤ n

which means that X1, . . . , Xn are P -independent, and they are
also identically distributed with λ-exponential distribution.

(b) Let

Yn(ω) := min
{
X1(ω), X2(ω), . . . , Xn(ω)

}
.

Compute P (Yn > t), and compute also the probability density
function of Yn .
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Solution

P (Yn > t) = P (X1 > t, . . . , Xn > t) =
n∏

i=1

P (Xi > t) = exp(−λt)n = exp(−nλt)

and the probability density function of Yn is given by

fYn(t) := − d

dt
P (Yn > t) = − d

dt
exp(−nλt) = nλ exp(−nλt)

which is the density of a λ-exponential random variable with pa-
rameter nλ.

(c) Let X∗n(ω) = max
{
X1(ω), X2(ω), . . . , Xn(ω)

}
Compute P (X∗n ≤ t). Compute also the probability density func-
tion of X∗n. Solution

P (X∗n ≤ t) = P (X1 ≤ t,X2 ≤ t,Xn ≤ t) =
n∏

i=1

P (Xi ≤ t) =
(
1− exp(−λt)

)n
and the probability density function of X∗n is given by

fX∗
n
(t) :=

d

dt
P (X∗n ≤ t) = nλ

(
1− exp(−λt)

)n−1
exp(−λt)

(d) Compute lim
n→∞

P

(
λX∗n ≤ t+ log(n)

)
.

Hint:
(
1 + x/n

)n −→ exp(x) as n→∞.
Solution

P

(
λX∗n ≤ t+ log(n)

)
=
(
1− exp(−t− log(n))

)n
=

(
1− exp(−t)

n

)n

(0.1)
−→ exp

(
− exp(−t)

)
as n→∞. The function

G(t) = exp
(
− exp(−t)

)
is continuous and strictly increasing, withG(−∞) = 0 andG(+∞) =
1, it is the cumulative distribution function of a probability distri-
bution on R. Such distribution is called Gumbel extreme value
distribution, which in the context of extreme value theory.
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Let ξn(ω) = (λX∗n(ω) − log n). We have shown that Gn(t) :=
P (ξn ≤ t) → G(t). When a sequence of cumulative distribution
functions Gn(t) converges to a cumulative distribution function
G(t) at all points t where G(t) is continuous, we say that ξn con-
verges in law to the limiting distribution G.

2. Consider a sequence of random variables (Uk(ω) : k ∈ N) such that for
∀t1, . . . , tn ∈ [0, 1],

P (U1 ≤ t1, . . . , Un ≤ tn) =
n∏

k=1

tk

(a) Show that (Uk(ω) : k ∈ N) are independent and uniformly distri-
buted on [0, 1].
Solution

P (U1 ≤ t1, . . . , Un ≤ tn) =
n∏

k=1

tk =
n∏

k=1

P (Uk ≤ tk)

which implies as in the previous exercise that U1, . . . , Un are P -
independent, and also that they are identically distributed where
the common probability distribution is Lebesgue measure on the
interval [0, 1].

(b) Consider Un(ω) = max
{
U1(ω), . . . , Un(ω)

}
.

Compute the cumulative distribution function of Un, FUn
(t) =

P (Un ≤ t).
Solution

P
(
Un ≤ t

)
= P

(
U1 ≤ t, . . . , Un ≤ t) =

n∏
i=1

P (Ui ≤ t) = tn

(c) Show that limn→∞ Un(ω) = 1 P-almost surely. Solution Note
that ∀ω ∈ Ω,

0 ≤ Un(ω) ≤ Un+1(ω) ↑ U∞(ω) ≤ 1

where the limit exists since the sequence Un(ω) is non-decreasing
and bounded by 1 for each ω.
We show that P

(
U∞ = 1

)
= 1.
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Equivalently we will show that

0
?
= P

(
U∞ < 1

)
= P

(⋃
m∈N

{U∞ < 1− 1/m}
)

and for each fixed m ∈ N

{U∞ < 1− 1/m} =
⋂
n∈N

{Un < 1− 1/m}

But by the σ-additivity of P ,

P

(⋂
n∈N

{Un < 1− 1/m}
)

= lim
N→∞

P

( ⋂
1≤n≤N

{Un < 1− 1/m}
)

= lim
N→∞

(
1− 1/m

)N
= 0

and the claim follows since the countable union of P -null events
is a P -null event.

(d) Let Un(ω) = min
{
U1(ω), . . . , Un(ω)

}
.

Compute the cumulative distribution function of Un, FUn
(t) =

P (Un ≤ t).
Solution

P (Un ≤ t) = 1− P (Un > t) = 1− P (U1 > t, . . . , Un > t) =

1−
n∏

i=1

P (Ui > t) = 1− (1− t)n

(e) Show that limn→∞ Un(ω) = 0 P-almost surely.
Hint: Vn = (1−Un) has the same distribution as Un, which implies
that Un and (1− Un) have the same distribution.
Solution
Note that ∀ω ∈ Ω,

1 ≥ Un(ω) ≥ Un+1(ω) ↓ U∞(ω) ≥ 0

where the limit exists since the sequence Un(ω) is non-increasing
and non-negative for each ω.
We show that P

(
U∞ = 0

)
= 1.

Equivalently we will show that

0
?
= P

(
U∞ > 0

)
= P

(⋃
m∈N

{U∞ > 1/m}
)
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and for each fixed m ∈ N

{U∞ > 1/m} =
⋂
n∈N

{Un > 1/m}

But by the σ-additivity of P ,

P

(⋂
n∈N

{Un > 1/m}
)

= lim
N→∞

P

( ⋂
1≤n≤N

{Un > 1/m}
)

= lim
N→∞

(1− 1/m)N = 0

and the claim follows since the countable union of P -null events
is a P -null event.

3. (a) let X(ω), Xn(ω), n ∈ N such that Xn(ω)→ X(ω) P -almost surely.
Show that also the Cesaro mean converges P -almost surely to X

lim
n→∞

1

n

n∑
i=1

Xi(ω) = X(ω) P -almost surely

Solutions Byt assumption, there exists an N with P (N) = 0
such that ∀ω ∈ N c,∀ε > 0 ∃K(ε, ω) such that ∀n ≥ K(ε, ω),

| Xn(ω)−X(ω)| < ε

Let

S̄n(ω) =
1

n

n∑
i=1

Xi(ω)

and

S̄n(ω)−X(ω) =
1

n

n∑
i=1

(
Xi(ω)−X(ω)

)
.

By the triangle inequality, when n ≥ K(ε, ω)

∣∣S̄n(ω)−X(ω)
∣∣ ≤ 1

n

K(ε,ω)−1∑
i=1

∣∣Xi(ω)−X(ω)
∣∣+

1

n

n∑
i=K(ε,ω)

∣∣Xi(ω)−X(ω)
∣∣

(0.2)

≤ 1

n
C(ω, ε) + ε
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where C(ω, ε) does not depend from n. Therefore when ω ∈ N c,
∀ε > 0

lim
n→∞

∣∣S̄n(ω)−X(ω)
∣∣ ≤ ε

and since ε > 0 is arbitrary this means that

lim
n→∞

S̄n(ω) = X(ω) ∀ω ∈ N c.

(b) Assume now that EP

(
|Xn −X|

)
→ 0, as n → ∞ (without assu-

ming P -almost sure convergence). We also need to assume that
EP (|Xn|) < ∞ ∀n, in order to guarantee that the Cesaro means
S̄n are integrable.
Show that the Cesaro mean is converging in L1(P ), that is

lim
n→∞

EP

(∣∣∣∣{ 1

n

n∑
i=1

Xi

}
−X(ω)

∣∣∣∣)→ 0 as n→∞

Hint: note that by the triangle inequality∣∣∣∣{ 1

n

n∑
i=1

Xi

}
−X(ω)

∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣Xi −X(ω)
∣∣ =

1

n

M∑
i=1

∣∣Xi −X(ω)
∣∣+

1

n

n∑
j=M+1

∣∣Xj −X(ω)
∣∣

∀n ≥ M , where the inequalities are preserved after taking the
expectation.
Solution By assumption ∀ε > 0 ∃K(ε) (which now does not
depend on ω) such that ∀n ≥ K(ε),

E
(
| Xn −X|

)
< ε

By the triangle inequality

∣∣S̄n(ω)−X(ω)
∣∣ ≤ 1

n

K(ε)−1∑
i=1

∣∣Xi(ω)−X(ω)
∣∣+

1

n

n∑
i=K(ε)

∣∣Xi(ω)−X(ω)
∣∣ ≤ 1

n
C(ω, ε) + ε

(0.3)

where

C(ω, ε) =

K(ε)−1∑
i=1

∣∣Xi(ω)−X(ω)
∣∣
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In order to make sure that C(ω, ε) is integrable, we assume that
EP (|Xn|) < ∞ ∀n. This means that |X| ≤ |Xn| + |X − Xn| is
integrable since E(|X|) ≤ E(|Xn|)+E(|X−Xn|) <∞ for n large
enough, and since X and Xn are integrable ∀n also |X − Xn| ≤
|X|+ |Xn| is integrable ∀n. Therefore C(ω, ε) in (0.3) is integrable
and does not depend on n. By taking expectation in (0.3)

E
(∣∣S̄n −X

∣∣) ≤ 1

n
E(C(ε)) + ε

with E(C(ε)) <∞, and

lim
n→∞

E
(∣∣S̄n −X

∣∣) ≤ ε, ∀ε > 0

which implies that S̄n
L1(P )→ X in L1(P )-norm.

4. Let X(ω), (Xn(ω) : n ∈ N), random variables on a probability space
(Ω,F , P ).

Show that if ∀ε > 0

∞∑
n=0

P (|Xn(ω)−X(ω)| > ε) <∞

it follows lim
n↑∞

Xn(ω) = X(ω) P -almost surely.

Hint: show first that{
ω : Xn(ω) 6→ X(ω)

}
=
⋃
k∈N

{
ω : |Xn(ω)−X(ω)| > k−1 infinitely often

}
and recall Borel-Cantelli’s lemma.

Solution Let

Am
n =

{
ω : |Xn(ω)−X(ω)| > 1/m

}
Since by assumption ∀m ∈ N∑

n→∞

P (Am
n ) <∞

by the first Borel Cantelli lemma ∀m ∈ N

P (lim sup
n∈N

Am
n ) = 0
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and since the countable union of P -null events is a P -null event

0 = P

(⋃
m

⋂
k

⋃
n≥k

Am
n

)
For the complement of this event we have

1 = P

(⋂
m∈N

⋃
k∈N

⋂
n≥k

(Am
n )c
)

= P

({
ω : ∀m∃K = K(ω,m) such that ∀n ≥ K(ω,m) |Xn(ω)−X(ω)| ≤ 1/m

})
= P

({
ω : lim

n→∞
Xn(ω) = X(ω)

})
5. Consider a random variable X(ω) with EP (|X|) <∞ . Show that

EP

(
|X|1(|X| > n)

)
=

∫
Ω

|X(ω)|1
(
|X(ω)| > n

)
P (dω)→ 0 as n→∞ .

Note that ∀ω ∈ Ω,

lim
n→∞

|X(ω)|1
(
|X(ω)| > n

)
= 0

simply because X(ω) ∈ R, and 1
(
|X(ω)| > n

)
= 0 for all n ≥ |X(ω)|.

Note also that ∀ω ∈ Ω

0 ≤ |X(ω)|1(|X(ω)| > n) ≤ |X(ω)|

where the upper bound is integrable by the assumption E(|X|) < ∞.
Therefore Lebesgue dominated convergence Theorem applies and we
can change the order of limit and expectation obtaining

lim
n→∞

EP

(
|X|1(|X| > n)

)
= EP

(
|X| lim

n→∞
1(|X| > n)

)
= 0
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