HU, Probability Theory Fall 2015, Problems 7 (28.10.2015)
In the problems all random variables live in a probability space (Ω, \mathcal{F}, P).

1. On a probability space (Ω, \mathcal{F}, P),
let $\left(X_{n}(\omega): n \in \mathbb{N}\right)$ be a sequence of exponential random variables such that

$$
P\left(X_{1}>t_{1}, \ldots, X_{n}>t_{n}\right)=\exp \left(-\lambda \sum_{i=1}^{n} t_{i}\right) \quad \forall n \in \mathbb{N}, t_{1}, \ldots, t_{n} \geq 0
$$

where $\lambda>0$ is a parameter.
(a) Show that the random variables $\left(X_{n}(\omega): n \in \mathbb{N}\right)$ are independent under P.

Solution

$$
\begin{aligned}
& P\left(X_{1}>t_{1}, \ldots, X_{n}>t_{n}\right)=\exp \left(-\lambda \sum_{i=1}^{n} t_{i}\right)=\prod_{i=1}^{n} \exp \left(-\lambda t_{i}\right)=\prod_{i=1}^{n} P\left(X_{i}>t_{i}\right) \\
& \quad \forall n \in \mathbb{N}, t_{1}, \ldots, t_{n} \geq 0,
\end{aligned}
$$

and since the collection of rectangles

$$
\mathcal{I}=\left\{\left(t_{1}, 1\right] \times\left(t_{2}, 1\right] \times \cdots \times\left(t_{n}, 1\right]: t_{i} \in[0,1]\right\}
$$

form a π-system (closed under intersections) which generate the borel σ-algebra $\mathcal{B}\left([0,1]^{n}\right)=\mathcal{B}([0,1])^{\otimes n}$, by Dynkin lemma on uniqueness of probability measures,
$P\left(X_{1} \in B_{1}, \ldots, X_{n} \in B_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \in B_{i}\right) \quad \forall B_{i} \in \mathcal{B}([0,1]), 1 \leq i \leq n$
which means that X_{1}, \ldots, X_{n} are P-independent, and they are also identically distributed with λ-exponential distribution.
(b) Let

$$
Y_{n}(\omega):=\min \left\{X_{1}(\omega), X_{2}(\omega), \ldots, X_{n}(\omega)\right\} .
$$

Compute $P\left(Y_{n}>t\right)$, and compute also the probability density function of Y_{n}.

Solution

$P\left(Y_{n}>t\right)=P\left(X_{1}>t, \ldots, X_{n}>t\right)=\prod_{i=1}^{n} P\left(X_{i}>t\right)=\exp (-\lambda t)^{n}=\exp (-n \lambda t)$
and the probability density function of Y_{n} is given by

$$
f_{Y_{n}}(t):=-\frac{d}{d t} P\left(Y_{n}>t\right)=-\frac{d}{d t} \exp (-n \lambda t)=n \lambda \exp (-n \lambda t)
$$

which is the density of a λ-exponential random variable with parameter $n \lambda$.
(c) Let $X_{n}^{*}(\omega)=\max \left\{X_{1}(\omega), X_{2}(\omega), \ldots, X_{n}(\omega)\right\}$

Compute $P\left(X_{n}^{*} \leq t\right)$. Compute also the probability density function of X_{n}^{*}. Solution

$$
P\left(X_{n}^{*} \leq t\right)=P\left(X_{1} \leq t, X_{2} \leq t, X_{n} \leq t\right)=\prod_{i=1}^{n} P\left(X_{i} \leq t\right)=(1-\exp (-\lambda t))^{n}
$$

and the probability density function of X_{n}^{*} is given by

$$
f_{X_{n}^{*}}(t):=\frac{d}{d t} P\left(X_{n}^{*} \leq t\right)=n \lambda(1-\exp (-\lambda t))^{n-1} \exp (-\lambda t)
$$

(d) Compute $\lim _{n \rightarrow \infty} P\left(\lambda X_{n}^{*} \leq t+\log (n)\right)$.

Hint: $(1+x / n)^{n} \longrightarrow \exp (x)$ as $n \rightarrow \infty$.

Solution

$$
\begin{align*}
& P\left(\lambda X_{n}^{*} \leq t+\log (n)\right)=(1-\exp (-t-\log (n)))^{n}=\left(1-\frac{\exp (-t)}{n}\right)^{n} \tag{0.1}\\
& \longrightarrow \exp (-\exp (-t))
\end{align*}
$$

as $n \rightarrow \infty$. The function

$$
G(t)=\exp (-\exp (-t))
$$

is continuous and strictly increasing, with $G(-\infty)=0$ and $G(+\infty)=$ 1 , it is the cumulative distribution function of a probability distribution on \mathbb{R}. Such distribution is called Gumbel extreme value distribution, which in the context of extreme value theory.

Let $\xi_{n}(\omega)=\left(\lambda X^{*} n(\omega)-\log n\right)$. We have shown that $G_{n}(t):=$ $P\left(\xi_{n} \leq t\right) \rightarrow G(t)$. When a sequence of cumulative distribution functions $G_{n}(t)$ converges to a cumulative distribution function $G(t)$ at all points t where $G(t)$ is continuous, we say that ξ_{n} converges in law to the limiting distribution G.
2. Consider a sequence of random variables $\left(U_{k}(\omega): k \in \mathbb{N}\right)$ such that for $\forall t_{1}, \ldots, t_{n} \in[0,1]$,

$$
P\left(U_{1} \leq t_{1}, \ldots, U_{n} \leq t_{n}\right)=\prod_{k=1}^{n} t_{k}
$$

(a) Show that $\left(U_{k}(\omega): k \in \mathbb{N}\right)$ are independent and uniformly distributed on $[0,1]$.

Solution

$$
P\left(U_{1} \leq t_{1}, \ldots, U_{n} \leq t_{n}\right)=\prod_{k=1}^{n} t_{k}=\prod_{k=1}^{n} P\left(U_{k} \leq t_{k}\right)
$$

which implies as in the previous exercise that U_{1}, \ldots, U_{n} are P independent, and also that they are identically distributed where the common probability distribution is Lebesgue measure on the interval $[0,1]$.
(b) Consider $\bar{U}_{n}(\omega)=\max \left\{U_{1}(\omega), \ldots, U_{n}(\omega)\right\}$.

Compute the cumulative distribution function of $\bar{U}_{n}, F_{\bar{U}_{n}}(t)=$ $P\left(\bar{U}_{n} \leq t\right)$.

Solution

$$
P\left(\bar{U}_{n} \leq t\right)=P\left(U_{1} \leq t, \ldots, U_{n} \leq t\right)=\prod_{i=1}^{n} P\left(U_{i} \leq t\right)=t^{n}
$$

(c) Show that $\lim _{n \rightarrow \infty} \bar{U}_{n}(\omega)=1 \mathbb{P}$-almost surely. Solution Note that $\forall \omega \in \Omega$,

$$
0 \leq \bar{U}_{n}(\omega) \leq \bar{U}_{n+1}(\omega) \uparrow \bar{U}_{\infty}(\omega) \leq 1
$$

where the limit exists since the sequence $\bar{U}_{n}(\omega)$ is non-decreasing and bounded by 1 for each ω.
We show that $P\left(\bar{U}_{\infty}=1\right)=1$.

Equivalently we will show that

$$
0 \stackrel{?}{=} P\left(\bar{U}_{\infty}<1\right)=P\left(\bigcup_{m \in \mathbb{N}}\left\{\bar{U}_{\infty}<1-1 / m\right\}\right)
$$

and for each fixed $m \in \mathbb{N}$

$$
\left\{\bar{U}_{\infty}<1-1 / m\right\}=\bigcap_{n \in \mathbb{N}}\left\{U_{n}<1-1 / m\right\}
$$

But by the σ-additivity of P,

$$
P\left(\bigcap_{n \in \mathbb{N}}\left\{U_{n}<1-1 / m\right\}\right)=\lim _{N \rightarrow \infty} P\left(\bigcap_{1 \leq n \leq N}\left\{U_{n}<1-1 / m\right\}\right)=\lim _{N \rightarrow \infty}(1-1 / m)^{N}=0
$$

and the claim follows since the countable union of P-null events is a P-null event.
(d) Let $\underline{U}_{n}(\omega)=\min \left\{U_{1}(\omega), \ldots, U_{n}(\omega)\right\}$.

Compute the cumulative distribution function of $\underline{U}_{n}, F_{\underline{U}_{n}}(t)=$ $P\left(\underline{U}_{n} \leq t\right)$.

Solution

$$
\begin{aligned}
& P\left(\underline{U}_{n} \leq t\right)=1-P\left(\underline{U}_{n}>t\right)=1-P\left(U_{1}>t, \ldots, U_{n}>t\right)= \\
& 1-\prod_{i=1}^{n} P\left(U_{i}>t\right)=1-(1-t)^{n}
\end{aligned}
$$

(e) Show that $\lim _{n \rightarrow \infty} \underline{U}_{n}(\omega)=0 \mathbb{P}$-almost surely.

Hint: $V_{n}=\left(1-U_{n}\right)$ has the same distribution as U_{n}, which implies that \underline{U}_{n} and $\left(1-\bar{U}_{n}\right)$ have the same distribution.

Solution

Note that $\forall \omega \in \Omega$,

$$
1 \geq \underline{U}_{n}(\omega) \geq \underline{U}_{n+1}(\omega) \downarrow \underline{U}_{\infty}(\omega) \geq 0
$$

where the limit exists since the sequence $\bar{U}_{n}(\omega)$ is non-increasing and non-negative for each ω.
We show that $P\left(\underline{U}_{\infty}=0\right)=1$.
Equivalently we will show that

$$
0 \stackrel{?}{=} P\left(\underline{U}_{\infty}>0\right)=P\left(\bigcup_{m \in \mathbb{N}}\left\{\underline{U}_{\infty}>1 / m\right\}\right)
$$

and for each fixed $m \in \mathbb{N}$

$$
\left\{\underline{U}_{\infty}>1 / m\right\}=\bigcap_{n \in \mathbb{N}}\left\{U_{n}>1 / m\right\}
$$

But by the σ-additivity of P,

$$
P\left(\bigcap_{n \in \mathbb{N}}\left\{U_{n}>1 / m\right\}\right)=\lim _{N \rightarrow \infty} P\left(\bigcap_{1 \leq n \leq N}\left\{U_{n}>1 / m\right\}\right)=\lim _{N \rightarrow \infty}(1-1 / m)^{N}=0
$$

and the claim follows since the countable union of P-null events is a P-null event.
3. (a) let $X(\omega), X_{n}(\omega), n \in \mathbb{N}$ such that $X_{n}(\omega) \rightarrow X(\omega) P$-almost surely. Show that also the Cesaro mean converges P-almost surely to X

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}(\omega)=X(\omega) \quad P \text {-almost surely }
$$

Solutions Byt assumption, there exists an N with $P(N)=0$ such that $\forall \omega \in N^{c}, \forall \varepsilon>0 \exists K(\varepsilon, \omega)$ such that $\forall n \geq K(\varepsilon, \omega)$,

$$
\left|X_{n}(\omega)-X(\omega)\right|<\varepsilon
$$

Let

$$
\bar{S}_{n}(\omega)=\frac{1}{n} \sum_{i=1}^{n} X_{i}(\omega)
$$

and

$$
\bar{S}_{n}(\omega)-X(\omega)=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}(\omega)-X(\omega)\right) .
$$

By the triangle inequality, when $n \geq K(\varepsilon, \omega)$

$$
\begin{align*}
& \left|\bar{S}_{n}(\omega)-X(\omega)\right| \leq \frac{1}{n} \sum_{i=1}^{K(\varepsilon, \omega)-1}\left|X_{i}(\omega)-X(\omega)\right|+\frac{1}{n} \sum_{i=K(\varepsilon, \omega)}^{n}\left|X_{i}(\omega)-X(\omega)\right| \tag{0.2}\\
& \quad \leq \frac{1}{n} C(\omega, \varepsilon)+\varepsilon
\end{align*}
$$

where $C(\omega, \varepsilon)$ does not depend from n. Therefore when $\omega \in N^{c}$, $\forall \varepsilon>0$

$$
\lim _{n \rightarrow \infty}\left|\bar{S}_{n}(\omega)-X(\omega)\right| \leq \varepsilon
$$

and since $\varepsilon>0$ is arbitrary this means that

$$
\lim _{n \rightarrow \infty} \bar{S}_{n}(\omega)=X(\omega) \quad \forall \omega \in N^{c} .
$$

(b) Assume now that $E_{P}\left(\left|X_{n}-X\right|\right) \rightarrow 0$, as $n \rightarrow \infty$ (without assuming P-almost sure convergence). We also need to assume that $E_{P}\left(\left|X_{n}\right|\right)<\infty \forall n$, in order to guarantee that the Cesaro means \bar{S}_{n} are integrable.
Show that the Cesaro mean is converging in $L^{1}(P)$, that is

$$
\lim _{n \rightarrow \infty} E_{P}\left(\left|\left\{\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\}-X(\omega)\right|\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Hint: note that by the triangle inequality

$$
\begin{aligned}
& \left|\left\{\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\}-X(\omega)\right| \leq \frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-X(\omega)\right|= \\
& \frac{1}{n} \sum_{i=1}^{M}\left|X_{i}-X(\omega)\right|+\frac{1}{n} \sum_{j=M+1}^{n}\left|X_{j}-X(\omega)\right|
\end{aligned}
$$

$\forall n \geq M$, where the inequalities are preserved after taking the expectation.
Solution By assumption $\forall \varepsilon>0 \exists K(\varepsilon)$ (which now does not depend on ω) such that $\forall n \geq K(\varepsilon)$,

$$
E\left(\left|X_{n}-X\right|\right)<\varepsilon
$$

By the triangle inequality

$$
\begin{equation*}
\left|\bar{S}_{n}(\omega)-X(\omega)\right| \leq \frac{1}{n} \sum_{i=1}^{K(\varepsilon)-1}\left|X_{i}(\omega)-X(\omega)\right|+\frac{1}{n} \sum_{i=K(\varepsilon)}^{n}\left|X_{i}(\omega)-X(\omega)\right| \leq \frac{1}{n} C(\omega, \varepsilon)+\varepsilon \tag{0.3}
\end{equation*}
$$

where

$$
C(\omega, \varepsilon)=\sum_{i=1}^{K(\varepsilon)-1}\left|X_{i}(\omega)-X(\omega)\right|
$$

In order to make sure that $C(\omega, \varepsilon)$ is integrable, we assume that $E_{P}\left(\left|X_{n}\right|\right)<\infty \forall n$. This means that $|X| \leq\left|X_{n}\right|+\left|X-X_{n}\right|$ is integrable since $E(|X|) \leq E\left(\left|X_{n}\right|\right)+E\left(\left|X-X_{n}\right|\right)<\infty$ for n large enough, and since X and X_{n} are integrable $\forall n$ also $\left|X-X_{n}\right| \leq$ $|X|+\left|X_{n}\right|$ is integrable $\forall n$. Therefore $C(\omega, \varepsilon)$ in (0.3) is integrable and does not depend on n. By taking expectation in (0.3)

$$
E\left(\left|\bar{S}_{n}-X\right|\right) \leq \frac{1}{n} E(C(\varepsilon))+\varepsilon
$$

with $E(C(\varepsilon))<\infty$, and

$$
\lim _{n \rightarrow \infty} E\left(\left|\bar{S}_{n}-X\right|\right) \leq \varepsilon, \quad \forall \varepsilon>0
$$

which implies that $\bar{S}_{n} \xrightarrow{L^{1}(P)} X$ in $L^{1}(P)$-norm.
4. Let $X(\omega),\left(X_{n}(\omega): n \in \mathbb{N}\right)$, random variables on a probability space (Ω, \mathcal{F}, P).
Show that if $\forall \varepsilon>0$

$$
\sum_{n=0}^{\infty} P\left(\left|X_{n}(\omega)-X(\omega)\right|>\varepsilon\right)<\infty
$$

it follows $\lim _{n \uparrow \infty} X_{n}(\omega)=X(\omega) P$-almost surely.
Hint: show first that

$$
\left\{\omega: X_{n}(\omega) \nrightarrow X(\omega)\right\}=\bigcup_{k \in \mathbb{N}}\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|>k^{-1} \text { infinitely often }\right\}
$$

and recall Borel-Cantelli's lemma.
Solution Let

$$
A_{n}^{m}=\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|>1 / m\right\}
$$

Since by assumption $\forall m \in \mathbb{N}$

$$
\sum_{n \rightarrow \infty} P\left(A_{n}^{m}\right)<\infty
$$

by the first Borel Cantelli lemma $\forall m \in \mathbb{N}$

$$
P\left(\limsup _{n \in \mathbb{N}} A_{n}^{m}\right)=0
$$

and since the countable union of P-null events is a P-null event

$$
0=P\left(\bigcup_{m} \bigcap_{k} \bigcup_{n \geq k} A_{n}^{m}\right)
$$

For the complement of this event we have

$$
\begin{aligned}
& 1=P\left(\bigcap_{m \in \mathbb{N}} \bigcup_{k \in \mathbb{N}}\left(A_{n \geq k}^{m}\right)^{c}\right) \\
& =P\left(\left\{\omega: \forall m \exists K=K(\omega, m) \text { such that } \forall n \geq K(\omega, m)\left|X_{n}(\omega)-X(\omega)\right| \leq 1 / m\right\}\right) \\
& =P\left(\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}\right)
\end{aligned}
$$

5. Consider a random variable $X(\omega)$ with $E_{P}(|X|)<\infty$. Show that

$$
E_{P}(|X| \mathbf{1}(|X|>n))=\int_{\Omega}|X(\omega)| \mathbf{1}(|X(\omega)|>n) P(d \omega) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Note that $\forall \omega \in \Omega$,

$$
\lim _{n \rightarrow \infty}|X(\omega)| \mathbf{1}(|X(\omega)|>n)=0
$$

simply because $X(\omega) \in R$, and $\mathbf{1}(|X(\omega)|>n)=0$ for all $n \geq|X(\omega)|$.
Note also that $\forall \omega \in \Omega$

$$
0 \leq|X(\omega)| \mathbf{1}(|X(\omega)|>n) \leq|X(\omega)|
$$

where the upper bound is integrable by the assumption $E(|X|)<\infty$. Therefore Lebesgue dominated convergence Theorem applies and we can change the order of limit and expectation obtaining

$$
\lim _{n \rightarrow \infty} E_{P}(|X| \mathbf{1}(|X|>n))=E_{P}\left(|X| \lim _{n \rightarrow \infty} \mathbf{1}(|X|>n)\right)=0
$$

