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UH, Probability Theory Fall 2015, Solutions Problems 6 (14.10.2015)

1. When the cumulative distribution function FX(t) = P (X ≤ t) of a R-
valued random variable X which is absolutely continuous with respect
to Lebesgue measure, which means

FX(b) = FX(a) +

∫ b

a

fX(t)dt

for some Borel measurable function fX(t) ≥ 0, which is called pro-
bability density function. When the classical derivative dFX

dt
(t) exists

at all t, then it is a probability density function. More in general
dFX

dt
(t) = dPX

dt
(t) = is understood as the Radon Nikodym derivative

of the push-forward probability measure PX with respect to Lebesgue
measure.

In such case, for every non-negative and Borel measurable test function
g(x) ≥ 0 we have

EP
(
g(X)

)
=

∫
Ω

g(X(ω))P (dω) =

∫
R
g(t)PX(dt)

=

∫
R
g(t)F (dt) =

∫
R
g(t)fX(t)dt (0.1)

where PX(B) = P
(
{ω : X(ω) ∈ B}

)
is the pushforward measure of

P by the random variable X. The integral w.r.t. PX on R is the same
as the Lebesgue Stieltjes integral w.r.t dF , meaning that PX coincides
with the measure induced by the cumulative distribution function F (t)
on R.
Hint: One possible strategy for this proof is to use the monotone class
theorem: Define the class

C =
{
g : R→ [0,∞) bounded and Borel measurable such that (0.3) holds

}
and show that C is a monotone class (use the linearity of the integral
together with the monotone convergence theorem) which contains the
indicators 1(a,b](t) ∀a ≤ b ∈ R.
Solution The assumption of almost everywhere (w.r.t. Lebesgue mea-
sure) differentiability of FX(t) is equivalent to

F (b) = F (a) +

∫ b

a

fX(t)dt ∀a, b ∈ R . (0.2)
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When g(t) = 1(a,b](t) we have

EP
(
g(X)

)
= P (X ∈ (a, b]) = F (b)− F (a) =

∫
R
1(a,b](t)fX(t)dt

which means that 1(a,b] ∈ C. If we show that C is a monotone class,
it follows by the monotone class theorem that C contains all functions
which are bounded and measurable w.r.t. the σ-algebra generated by
the intervals σ((a, b] : a ≤ b ∈ R) = B(R) which is the Borel σ-algebra.

Lets check: the constant 1 ∈ C, since

1 = EP (1) = F (+∞)− F (−∞) =

∫ +∞

−∞
fX(t)dt

Since all integrals in (0.2) are linear w.r.t the integrand function g, it
follows that C is a vector space.

Let (gn(t) : n ∈ N) ⊆ C with 0 ≤ gn(t) ↑ g(t) ≤ K <∞. Then

EP
(
gn(X)

)
=

∫
Ω

g(X(ω))P (dω) =

∫
R
gn(t)PX(dt)

=

∫
R
gn(t)F (dt) =

∫
R
gn(t)fX(t)dt (0.3)

and since the monotone convergence theorem holds for all the integrals
in (0.3) it follows that we can take the limit inside the integral and
(0.3) holds for g.

When g(t) ≥ 0 a non-negative Borel measurable function which is not
bounded, let g(N)(t) = g(t) ∧ N , then (0.3) holds for each g(N)(t) and
once again the monotone convergence theorem implies that (0.3) holds
for g(t) as well.

2. Linearity of the expectation The expectation of a random variable
X(ω) is defined as

EP
(
X
)
= EP

(
X+
)
− EP

(
X−
)

where X+ = max{X, 0} ≥ 0, X− = max{−X, 0} ≥ 0 are non-negative
random variables, and we have defined first for non-negative random
variables

EP(X) = sup
Y ∈SF :0≤Y≤X

{
EP(Y )

}
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In this way the expectation is well defined unless

EP(X
+) = EP(X

−) = +∞.

In the lectures we have shown (first for simple random variables and
then by the monotone convergence theorem ) that when X(ω) ≥ 0,
Y (ω) ≥ 0 P -almost surely (outside a P-null set), and a, b ≥ 0

EP(aX + bY ) = aEP(X) + bEP(Y ) (0.4)

Show that linearity holds for any random variables X, Y and a, b ∈ R
when the expectations on both left and right sides in (0.4) are finite.

Hint: write (aX + bY ) using the representations X = (X+ − X−),
Y = (Y +−Y −), a = (a+−a−), b = (b+−b−), and integrate the positive
parts and negative parts separately.

Solution

aX + bY =(aX + bY )+ − (aX + bY )− = (a+ − a−)(X+ −X−) + (b+ − b−)(Y + − Y −) =
(a+X+ + a−X− + b+Y + + b−Y −)− (a−X+ + a−X+ + b−Y + + b−Y +)

Then

E(aX + bY ) =E(a+X+ + a−X− + b+Y + + b−Y −)− E(a−X+ + a−X+ + b−Y + + b−Y +)

=a+E(X+) + a−E(X−) + b+E(Y +) + b−E(Y −)+

− a−E(X+) + a−E(X+) + b−E(Y +) + b−E(Y +)

=(a+ − a−)(E(X+)− E(X−)) + (b+ − b−)(E(Y +)− E(Y −))
=aE(X) + bE(Y )

where we have used linearity for non-negative random variables with
non-negative coefficients.

3. Let U(ω) be uniformly distributed r.v. with values in [0, 1], such that
P({U ∈ (a, b]}) = (b− a) for 0 ≤ a ≤ b ≤ 1.

(a) Show that the powers U(ω)z, with z ∈ Z (the integers) are ran-
dom variables. Solution The map u 7→ un is continuous when
n ∈ N{0, 1, 2 . . . }, and the U(ω)n is a random variable since a
continuous function composed with a measurable map is measu-
rable. When z = −n and n ≥ 1, the map u 7→ u−n is not conti-
nuous at u = 0, and 0−n = +∞. Nevertheless U−n(ω) is a ran-
dom variable since { ω : U−n(ω) ≤ t} = {ω : U(ω) ≥ t−1/n} =
U−1([t−1/n,+∞) ∈ F , since U is a random variable.

4



(b) Compute the moments EP(U z) ∈ [0,+∞] for z ∈ Z.
We distinguish 3 cases: z ∈ N, z = −1 and z ≤ −2.
For n ≥ 0

EP (U
n) =

∫ 1

0

undu =
1

n+ 1

EP (1/U) =

∫ 1

0

1

u
du = log(1)− log(0) = +∞

which implies

EP (U
−n) =∞ ∀n ∈ N

by comparison since 0 ≤ U−1 ≤ U−n when n ≥ 1 and 0 ≤ U ≤
1, and by the positivity of the expectation +∞ = EP (U

−1) ≤
EP (U

−n).

(c) Compute the exponential moments EP
(
exp(tU)

)
for t ∈ R.

EP
(
exp(tU)

)
=

∫ 1

0

exp(tu)du =
et − 1

t

Note that this is continuous at t = 0,

lim
t→0

EP
(
exp(tU)

)
= lim

t→0

et − 1

t
= lim

t=0

et

1
= 1 = EP (exp(t0U))

with t0 = 0, where we used l’Hospital rule. This is also a con-
sequence of the bounded convegence theorem, for any in t ∈
[−T, T ] with T > 0, we have 0 ≤ exp(tU(ω)) ≤ exp(TU(ω)) with
EP (exp(TU)) <∞ which implies that the map t 7→ EP (exp(tU))
is continuous.

(d) Compute the trigonometric moments EP
(
cos(2πtU)

)
and EP

(
sin(2πtU)

)
for t ∈ R.
Solution

EP
(
sin(2πtU)

)
=

∫ 1

0

sin(2πtu)du =
1− cos(2πt)

2πt
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Note that since | sin(x)| ≤ 1, it follows by the dominated conver-
gent theorem that the map t 7→ EP

(
sin(2πtU)

)
is continous.

Note for example that we have continuity at t = 0:

lim
t→0

EP
(
sin(2πtU)

)
= lim

t→0

1− cos(2πt)

2πt
= lim

t→0

2π sin(2πt)

2π
= 0 = EP

(
sin(2πt0U)

)
with t0 = 0.

EP
(
cos(2πtU)

)
=

∫ 1

0

cos(2πtu)du =
sin(2πt)

2πt

Note that since | cos(x)| ≤ 1, it follows by the dominated conver-
gent theorem that the map t 7→ EP

(
cos(2πtU)

)
is continous.

Note for example that we have continuity at t = 0:

lim
t→0

EP
(
cos(2πtU)

)
= lim

t→0

sin(2πt)

2πt
= lim

t→0

2π cos(2πt)

2π
= 1 = EP

(
cos(2πt0U)

)
with t0 = 0.

4. Let f : [0, T ] → R+ be a non-negative and bounded measurable func-
tion.

We define its upper and lower Riemann-integrals as follows:

J+(f) = inf
{
I(g) : g ≥ f, g takes finitely many values and is piecewise continuous

}
J−(f) = sup

{
I(g) : g ≤ f, g takes finitely many values and is piecewise continuous

}
where the integral I(g) of a piecewise continuous function g taking fi-
nitely many values is the usual finite sum.

Note that on the real line, a piecewise continuous simple function taking
finitely many values is piecewise constant, with representation

g(x) =
n∑
k=1

ak1Ei
(x), with I(g) =

n∑
k=1

ak length(Ei)

where Ei are intervals. In the construction of Lebesgue integral, the
general definition uses Borel sets instead of intervals.

We say that f is Riemann integrable when J+(f) = J−(f) which defines
the Riemann integral J(f) (it is possible that J(f) = +∞).
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(a) Show that when f is Riemann integrable the Riemann integral
J(f) coincides with Lebegue integral I(f) defined in the lectures.
Hint We define the Lebesgue integral I(f) of a Borel measurable
non-negative function w.r.t. Lebesgue measure as

I(f) = sup
{
I(g) : g ≤ f, g is measurable and takes finitely many values

}
(b) Show that a non-negative continuous function f is Riemann inte-

grable on the compact set [0, T ].
Hint: a continuous function uniformly continuous on compact
sets. Note that you can approximate uniformly on compacts a
continuous function by piecewise continuous simple functions.
Solution A simple piecewise continuous function has represen-
tation

g(x) =
n∑
k=1

yk1Ek
(x)

where Ek are intervals.
Since we are integrating with respect to Lebesgue measure, func-
tions which differ on a set of Lebesgue measure zero have the same
integral, so we can assume for example that Ek = (ak, bk]. Denote
by SC the class of simple piecewise continuous functions. Then
for such g Riemann and Lebesgue integrals coincide with the Rie-
mann sum

J(g) = I(g) =
n∑
k=1

ykλ(Ek) =
n∑
k=1

yk(bk − ak)

Let now f(x) ≥ 0 a Borel measurable function, and let 0 ≤ g′(x) ≤
f(x) ≤ g“(x) for some g′, g′′ ∈ SC+. Since the Lebesgue integral
is a positive operator,

0 ≤ J(g′) = I(g′) ≤ I(f) ≤ I(g′′) = J(g

)

by taking the supremum over g′ ∈ SC+, with 0 ≤ g′ ≤ f , and
infinum over g′ ∈ SC+, with f ≤ g′, it follows that

0 ≤ J−(f) ≤ I(f) ≤ J+(f)
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Therefore when f is Riemann integrable, by definition J(f) =
J+(f) = J−(f) = I(f), and by the sandwhiching argument the
Lebegue integral and Riemann integral coincide when the latter
exists. However the Lebesgue integral is more general, we show in
the next example a Borel function f ≥ 0 with well define Lebesgue
integral such that J−(f) � J+(f) and the Riemann integral does
not exists.

(c) Let f(x) = 1Q(x) where Q are the rationals.
Show that f is Borel measurable, but is not Riemann integrable
on [0, T ].
Hint : Show that on a compact interval [0, T ] J+(f) = T and
J−(f) = 0.
Solution Since the rationals are dense in R, it follows that the
smallest piecewise continuous simple function which is an upper
bound for 1Q(x) is the constant function with value 1, and t
the biggest piecewise continuous simple function which is a lower
bound for 1Q(x) is the constant function with value 0. Therefore
J+(f) = 1 × λ([0, T ]) = T and J−(f) = 0 × λ([0, T ]) = 0, which
shows that 1Q(x) is not Riemann integrable.

(d) For the Lebesgue integral we have

I(f) =

∫ T

0

f(x)dx =

∫ T

0

1Q(x)dx =
∑

q∈[0,T ]∩Q

λ({q}) = 0

since the Lebesgue measure assigns zero mass λ({q}) = 0 to the
singletons and Q is countable.

5. (a) Prove Chebychev inequality: for a random variable X with
X(ω) ≥ 0 P -almost surely,

P(X > t) ≤
EP
(
X
)

t
∀t > 0

Hint Note that

0 ≤ t 1(X(ω) > t) ≤ X(ω) .

(b) Prove Chentsov inequality

P(X > t) ≤ inf
θ>0

{
exp(−θt)EP

(
exp(θX)

)}
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Hint: for any θ > 0, X > t⇐⇒ exp(θX) > exp(θt) .
Solution Since the expectation is a positive operator, the inequa-
lity is preserved after taking expectation:

0 ≤ tP (X > t) ≤ EP (X)

Let Y = exp(θX). Since the map x 7→ y = eθx is strictly increasing
when θ > 0, seuraa ∀θ > 0,

P (X > t) = P (Y > exp(θX)) ≤ EP (exp(θX))e−θt .

(c) Consider a random variable N(ω) with Poisson(λ) distribution,
where λ > 0 is the parameter and

Pλ
(
N = k) = exp(−λ)λ

k

k!
k ∈ N = {0, 1, 2, . . . }

(d) Knowing that E(exp(θN)) = exp
(
λ(eθ − 1)

)
, (computed in the

exercise sheet n.5) use Chentsov inequality to bound from above
the probability Pλ

(
N > t

)
, for t > 0.

Pλ
(
X > t

)
≤ inf

θ>0

{
exp(−θt)E

(
exp(θX)

)}
= inf

θ>0

{
exp
(
λ(eθ − 1)− θt

)}
since at the minimum point t∗

∂

∂θ

(
λ(eθ − 1)− θt

)
= λeθ − t = 0

with

∂2

∂θ2

(
λ(eθ − 1)− θt

)
= λeθ > 0,

it follows that the function θ 7→
(
λ(eθ − 1) − θt

)
is convex and

the minimum is achieved at θ∗ = log(t) − log(λ), and we get the
Chentsov upper bound as

Pθ
(
X > t

)
≤ exp(t− λ)

(
λ

t

)t
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