UH, Probability Theory Fall 2015, Solutions Problems 6 (14.10.2015)

1. When the cumulative distribution function $F_{X}(t)=P(X \leq t)$ of a \mathbb{R} valued random variable X which is absolutely continuous with respect to Lebesgue measure, which means

$$
F_{X}(b)=F_{X}(a)+\int_{a}^{b} f_{X}(t) d t
$$

for some Borel measurable function $f_{X}(t) \geq 0$, which is called probability density function. When the classical derivative $\frac{d F_{X}}{d t}(t)$ exists at all t, then it is a probability density function. More in general $\frac{d F_{X}}{d t}(t)=\frac{d P_{X}}{d t}(t)=$ is understood as the Radon Nikodym derivative of the push-forward probability measure P_{X} with respect to Lebesgue measure.

In such case, for every non-negative and Borel measurable test function $g(x) \geq 0$ we have

$$
\begin{align*}
& E_{P}(g(X))=\int_{\Omega} g(X(\omega)) P(d \omega)=\int_{\mathbb{R}} g(t) P_{X}(d t) \\
& =\int_{\mathbb{R}} g(t) F(d t)=\int_{\mathbb{R}} g(t) f_{X}(t) d t \tag{0.1}
\end{align*}
$$

where $P_{X}(B)=\mathbb{P}(\{\omega: X(\omega) \in B\})$ is the pushforward measure of \mathbb{P} by the random variable X. The integral w.r.t. P_{X} on \mathbb{R} is the same as the Lebesgue Stieltjes integral w.r.t $d F$, meaning that P_{X} coincides with the measure induced by the cumulative distribution function $F(t)$ on \mathbb{R}.

Hint: One possible strategy for this proof is to use the monotone class theorem: Define the class
$\mathcal{C}=\{g: \mathbb{R} \rightarrow[0, \infty)$ bounded and Borel measurable such that (0.3) holds $\}$
and show that \mathcal{C} is a monotone class (use the linearity of the integral together with the monotone convergence theorem) which contains the indicators $\mathbf{1}_{(a, b]}(t) \forall a \leq b \in \mathbb{R}$.

Solution The assumption of almost everywhere (w.r.t. Lebesgue measure) differentiability of $F_{X}(t)$ is equivalent to

$$
\begin{equation*}
F(b)=F(a)+\int_{a}^{b} f_{X}(t) d t \quad \forall a, b \in \mathbb{R} \tag{0.2}
\end{equation*}
$$

When $g(t)=\mathbf{1}_{(a, b]}(t)$ we have

$$
E_{P}(g(X))=P(X \in(a, b])=F(b)-F(a)=\int_{\mathbb{R}} \mathbf{1}_{(a, b]}(t) f_{X}(t) d t
$$

which means that $\mathbf{1}_{(a, b]} \in \mathcal{C}$. If we show that \mathcal{C} is a monotone class, it follows by the monotone class theorem that \mathcal{C} contains all functions which are bounded and measurable w.r.t. the σ-algebra generated by the intervals $\sigma((a, b]: a \leq b \in \mathbb{R})=\mathcal{B}(\mathbb{R})$ which is the Borel σ-algebra.
Lets check: the constant $1 \in \mathcal{C}$, since

$$
1=E_{P}(1)=F(+\infty)-F(-\infty)=\int_{-\infty}^{+\infty} f_{X}(t) d t
$$

Since all integrals in 0.2 are linear w.r.t the integrand function g, it follows that \mathcal{C} is a vector space.
Let $\left(g_{n}(t): n \in \mathbb{N}\right) \subseteq \mathcal{C}$ with $0 \leq g_{n}(t) \uparrow g(t) \leq K<\infty$. Then

$$
\begin{align*}
& E_{P}\left(g_{n}(X)\right)=\int_{\Omega} g(X(\omega)) P(d \omega)=\int_{\mathbb{R}} g_{n}(t) P_{X}(d t) \\
& =\int_{\mathbb{R}} g_{n}(t) F(d t)=\int_{\mathbb{R}} g_{n}(t) f_{X}(t) d t \tag{0.3}
\end{align*}
$$

and since the monotone convergence theorem holds for all the integrals in (0.3) it follows that we can take the limit inside the integral and (0.3) holds for g.

When $g(t) \geq 0$ a non-negative Borel measurable function which is not bounded, let $g^{(N)}(t)=g(t) \wedge N$, then (0.3) holds for each $g^{(N)}(t)$ and once again the monotone convergence theorem implies that (0.3) holds for $g(t)$ as well.
2. Linearity of the expectation The expectation of a random variable $X(\omega)$ is defined as

$$
E_{\mathbb{P}}(X)=E_{\mathbb{P}}\left(X^{+}\right)-E_{\mathbb{P}}\left(X^{-}\right)
$$

where $X^{+}=\max \{X, 0\} \geq 0, X^{-}=\max \{-X, 0\} \geq 0$ are non-negative random variables, and we have defined first for non-negative random variables

$$
E_{\mathbb{P}}(X)=\sup _{Y \in \mathcal{S} F: 0 \leq Y \leq X}\left\{E_{\mathbb{P}}(Y)\right\}
$$

In this way the expectation is well defined unless

$$
E_{\mathbb{P}}\left(X^{+}\right)=E_{\mathbb{P}}\left(X^{-}\right)=+\infty .
$$

In the lectures we have shown (first for simple random variables and then by the monotone convergence theorem) that when $X(\omega) \geq 0$, $Y(\omega) \geq 0 P$-almost surely (outside a \mathbb{P}-null set), and $a, b \geq 0$

$$
\begin{equation*}
E_{\mathbb{P}}(a X+b Y)=a E_{\mathbb{P}}(X)+b E_{\mathbb{P}}(Y) \tag{0.4}
\end{equation*}
$$

Show that linearity holds for any random variables X, Y and $a, b \in \mathbb{R}$ when the expectations on both left and right sides in (0.4) are finite.
Hint: write $(a X+b Y)$ using the representations $X=\left(X^{+}-X^{-}\right)$, $Y=\left(Y^{+}-Y^{-}\right), a=\left(a^{+}-a^{-}\right), b=\left(b^{+}-b^{-}\right)$, and integrate the positive parts and negative parts separately.

Solution

$$
\begin{aligned}
a X+b Y= & (a X+b Y)^{+}-(a X+b Y)^{-}=\left(a^{+}-a^{-}\right)\left(X^{+}-X^{-}\right)+\left(b^{+}-b^{-}\right)\left(Y^{+}-Y^{-}\right)= \\
& \left(a^{+} X^{+}+a^{-} X^{-}+b^{+} Y^{+}+b^{-} Y^{-}\right)-\left(a^{-} X^{+}+a^{-} X^{+}+b^{-} Y^{+}+b^{-} Y^{+}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
E(a X+b Y)= & E\left(a^{+} X^{+}+a^{-} X^{-}+b^{+} Y^{+}+b^{-} Y^{-}\right)-E\left(a^{-} X^{+}+a^{-} X^{+}+b^{-} Y^{+}+b^{-} Y^{+}\right) \\
= & a^{+} E\left(X^{+}\right)+a^{-} E\left(X^{-}\right)+b^{+} E\left(Y^{+}\right)+b^{-} E\left(Y^{-}\right)+ \\
& -a^{-} E\left(X^{+}\right)+a^{-} E\left(X^{+}\right)+b^{-} E\left(Y^{+}\right)+b^{-} E\left(Y^{+}\right) \\
= & \left(a^{+}-a^{-}\right)\left(E\left(X^{+}\right)-E\left(X^{-}\right)\right)+\left(b^{+}-b^{-}\right)\left(E\left(Y^{+}\right)-E\left(Y^{-}\right)\right) \\
= & a E(X)+b E(Y)
\end{aligned}
$$

where we have used linearity for non-negative random variables with non-negative coefficients.
3. Let $U(\omega)$ be uniformly distributed r.v. with values in $[0,1]$, such that $\mathbb{P}(\{U \in(a, b]\})=(b-a)$ for $0 \leq a \leq b \leq 1$.
(a) Show that the powers $U(\omega)^{z}$, with $z \in \mathbb{Z}$ (the integers) are random variables. Solution The map $u \mapsto u^{n}$ is continuous when $n \in \mathbb{N}\{0,1,2 \ldots\}$, and the $U(\omega)^{n}$ is a random variable since a continuous function composed with a measurable map is measurable. When $z=-n$ and $n \geq 1$, the map $u \mapsto u^{-n}$ is not continuous at $u=0$, and $0^{-n}=+\infty$. Nevertheless $U^{-n}(\omega)$ is a random variable since $\left\{\omega: U^{-n}(\omega) \leq t\right\}=\left\{\omega: U(\omega) \geq t^{-1 / n}\right\}=$ $U^{-1}\left(\left[t^{-1 / n},+\infty\right) \in \mathcal{F}\right.$, since U is a random variable.
(b) Compute the moments $E_{\mathbb{P}}\left(U^{z}\right) \in[0,+\infty]$ for $z \in \mathbb{Z}$.

We distinguish 3 cases: $z \in \mathbb{N}, z=-1$ and $z \leq-2$.
For $n \geq 0$

$$
\begin{gathered}
E_{P}\left(U^{n}\right)=\int_{0}^{1} u^{n} d u=\frac{1}{n+1} \\
E_{P}(1 / U)=\int_{0}^{1} \frac{1}{u} d u=\log (1)-\log (0)=+\infty
\end{gathered}
$$

which implies

$$
E_{P}\left(U^{-n}\right)=\infty \quad \forall n \in \mathbb{N}
$$

by comparison since $0 \leq U^{-1} \leq U^{-n}$ when $n \geq 1$ and $0 \leq U \leq$ 1 , and by the positivity of the expectation $+\infty=E_{P}\left(U^{-1}\right) \leq$ $E_{P}\left(U^{-n}\right)$.
(c) Compute the exponential moments $E_{\mathbb{P}}(\exp (t U))$ for $t \in \mathbb{R}$.

$$
E_{\mathbb{P}}(\exp (t U))=\int_{0}^{1} \exp (t u) d u=\frac{e^{t}-1}{t}
$$

Note that this is continuous at $t=0$,

$$
\lim _{t \rightarrow 0} E_{\mathbb{P}}(\exp (t U))=\lim _{t \rightarrow 0} \frac{e^{t}-1}{t}=\lim _{t=0} \frac{e^{t}}{1}=1=E_{P}\left(\exp \left(t_{0} U\right)\right)
$$

with $t_{0}=0$, where we used l'Hospital rule. This is also a consequence of the bounded convegence theorem, for any in $t \in$ $[-T, T]$ with $T>0$, we have $0 \leq \exp (t U(\omega)) \leq \exp (T U(\omega))$ with $E_{P}(\exp (T U))<\infty$ which implies that the map $t \mapsto E_{P}(\exp (t U))$ is continuous.
(d) Compute the trigonometric moments $E_{\mathbb{P}}(\cos (2 \pi t U))$ and $E_{\mathbb{P}}(\sin (2 \pi t U))$ for $t \in \mathbb{R}$.

Solution

$$
E_{\mathbb{P}}(\sin (2 \pi t U))=\int_{0}^{1} \sin (2 \pi t u) d u=\frac{1-\cos (2 \pi t)}{2 \pi t}
$$

Note that since $|\sin (x)| \leq 1$, it follows by the dominated convergent theorem that the map $t \mapsto E_{\mathbb{P}}(\sin (2 \pi t U))$ is continous.
Note for example that we have continuity at $t=0$:
$\lim _{t \rightarrow 0} E_{\mathbb{P}}(\sin (2 \pi t U))=\lim _{t \rightarrow 0} \frac{1-\cos (2 \pi t)}{2 \pi t}=\lim _{t \rightarrow 0} \frac{2 \pi \sin (2 \pi t)}{2 \pi}=0=E_{\mathbb{P}}\left(\sin \left(2 \pi t_{0} U\right)\right)$
with $t_{0}=0$.

$$
E_{\mathbb{P}}(\cos (2 \pi t U))=\int_{0}^{1} \cos (2 \pi t u) d u=\frac{\sin (2 \pi t)}{2 \pi t}
$$

Note that since $|\cos (x)| \leq 1$, it follows by the dominated convergent theorem that the map $t \mapsto E_{\mathbb{P}}(\cos (2 \pi t U))$ is continous.
Note for example that we have continuity at $t=0$:
$\lim _{t \rightarrow 0} E_{\mathbb{P}}(\cos (2 \pi t U))=\lim _{t \rightarrow 0} \frac{\sin (2 \pi t)}{2 \pi t}=\lim _{t \rightarrow 0} \frac{2 \pi \cos (2 \pi t)}{2 \pi}=1=E_{\mathbb{P}}\left(\cos \left(2 \pi t_{0} U\right)\right)$
with $t_{0}=0$.
4. Let $f:[0, T] \rightarrow \mathbb{R}^{+}$be a non-negative and bounded measurable function.
We define its upper and lower Riemann-integrals as follows:
$J^{+}(f)=\inf \{I(g): g \geq f, g$ takes finitely many values and is piecewise continuous $\}$
$J^{-}(f)=\sup \{I(g): g \leq f, g$ takes finitely many values and is piecewise continuous $\}$
where the integral $I(g)$ of a piecewise continuous function g taking finitely many values is the usual finite sum.

Note that on the real line, a piecewise continuous simple function taking finitely many values is piecewise constant, with representation

$$
g(x)=\sum_{k=1}^{n} a_{k} \mathbf{1}_{E_{i}}(x), \text { with } I(g)=\sum_{k=1}^{n} a_{k} \operatorname{length}\left(E_{i}\right)
$$

where E_{i} are intervals. In the construction of Lebesgue integral, the general definition uses Borel sets instead of intervals.

We say that f is Riemann integrable when $J^{+}(f)=J^{-}(f)$ which defines the Riemann integral $J(f)$ (it is possible that $J(f)=+\infty$).
(a) Show that when f is Riemann integrable the Riemann integral $J(f)$ coincides with Lebegue integral $I(f)$ defined in the lectures. Hint We define the Lebesgue integral $I(f)$ of a Borel measurable non-negative function w.r.t. Lebesgue measure as
$I(f)=\sup \{I(g): g \leq f, g$ is measurable and takes finitely many values $\}$
(b) Show that a non-negative continuous function f is Riemann integrable on the compact set $[0, T]$.
Hint: a continuous function uniformly continuous on compact sets. Note that you can approximate uniformly on compacts a continuous function by piecewise continuous simple functions.
Solution A simple piecewise continuous function has representation

$$
g(x)=\sum_{k=1}^{n} y_{k} \mathbf{1}_{E_{k}}(x)
$$

where E_{k} are intervals.
Since we are integrating with respect to Lebesgue measure, functions which differ on a set of Lebesgue measure zero have the same integral, so we can assume for example that $E_{k}=\left(a_{k}, b_{k}\right]$. Denote by $\mathcal{S C}$ the class of simple piecewise continuous functions. Then for such g Riemann and Lebesgue integrals coincide with the Riemann sum

$$
J(g)=I(g)=\sum_{k=1}^{n} y_{k} \lambda\left(E_{k}\right)=\sum_{k=1}^{n} y_{k}\left(b_{k}-a_{k}\right)
$$

Let now $f(x) \geq 0$ a Borel measurable function, and let $0 \leq g^{\prime}(x) \leq$ $f(x) \leq g^{\prime \prime}(x)$ for some $g^{\prime}, g^{\prime \prime} \in \mathcal{S C}^{+}$. Since the Lebesgue integral is a positive operator,

$$
0 \leq J\left(g^{\prime}\right)=I\left(g^{\prime}\right) \leq I(f) \leq I\left(g^{\prime} \prime\right)=J(g
$$

by taking the supremum over $g^{\prime} \in \mathcal{S} C^{+}$, with $0 \leq g^{\prime} \leq f$, and infinum over $g^{\prime} \in \mathcal{S C}^{+}$, with $f \leq g^{\prime}$, it follows that

$$
0 \leq J^{-}(f) \leq I(f) \leq J^{+}(f)
$$

Therefore when f is Riemann integrable, by definition $J(f)=$ $J^{+}(f)=J^{-}(f)=I(f)$, and by the sandwhiching argument the Lebegue integral and Riemann integral coincide when the latter exists. However the Lebesgue integral is more general, we show in the next example a Borel function $f \geq 0$ with well define Lebesgue integral such that $J^{-}(f) \lesseqgtr J^{+}(f)$ and the Riemann integral does not exists.
(c) Let $f(x)=\mathbf{1}_{\mathbb{Q}}(x)$ where \mathbb{Q} are the rationals.

Show that f is Borel measurable, but is not Riemann integrable on $[0, T]$.
Hint : Show that on a compact interval $[0, T] J^{+}(f)=T$ and $J^{-}(f)=0$.
Solution Since the rationals are dense in \mathbb{R}, it follows that the smallest piecewise continuous simple function which is an upper bound for $\mathbf{1}_{Q}(x)$ is the constant function with value 1 , and t the biggest piecewise continuous simple function which is a lower bound for $\mathbf{1}_{Q}(x)$ is the constant function with value 0 . Therefore $J^{+}(f)=1 \times \lambda([0, T])=T$ and $J^{-}(f)=0 \times \lambda([0, T])=0$, which shows that $\mathbf{1}_{\mathbb{Q}}(x)$ is not Riemann integrable.
(d) For the Lebesgue integral we have

$$
I(f)=\int_{0}^{T} f(x) d x=\int_{0}^{T} \mathbf{1}_{Q}(x) d x=\sum_{q \in[0, T] \cap \mathbb{Q}} \lambda(\{q\})=0
$$

since the Lebesgue measure assigns zero mass $\lambda(\{q\})=0$ to the singletons and \mathbb{Q} is countable.
5. (a) Prove Chebychev inequality: for a random variable X with $X(\omega) \geq 0 P$-almost surely,

$$
\mathbb{P}(X>t) \leq \frac{E_{\mathbb{P}}(X)}{t} \quad \forall t>0
$$

Hint Note that

$$
0 \leq t \mathbf{1}(X(\omega)>t) \leq X(\omega)
$$

(b) Prove Chentsov inequality

$$
\mathbb{P}(X>t) \leq \inf _{\theta>0}\left\{\exp (-\theta t) E_{\mathbb{P}}(\exp (\theta X))\right\}
$$

Hint: for any $\theta>0, X>t \Longleftrightarrow \exp (\theta X)>\exp (\theta t)$.
Solution Since the expectation is a positive operator, the inequality is preserved after taking expectation:

$$
0 \leq t P(X>t) \leq E_{P}(X)
$$

Let $Y=\exp (\theta X)$. Since the map $x \mapsto y=e^{\theta x}$ is strictly increasing when $\theta>0$, seuraa $\forall \theta>0$,

$$
P(X>t)=P(Y>\exp (\theta X)) \leq E_{P}(\exp (\theta X)) e^{-\theta t}
$$

(c) Consider a random variable $N(\omega)$ with $\operatorname{Poisson}(\lambda)$ distribution, where $\lambda>0$ is the parameter and

$$
\mathbb{P}_{\lambda}(N=k)=\exp (-\lambda) \frac{\lambda^{k}}{k!} \quad k \in \mathbb{N}=\{0,1,2, \ldots\}
$$

(d) Knowing that $E(\exp (\theta N))=\exp \left(\lambda\left(e^{\theta}-1\right)\right)$, (computed in the exercise sheet n.5) use Chentsov inequality to bound from above the probability $\mathbb{P}_{\lambda}(N>t)$, for $t>0$.

$$
P_{\lambda}(X>t) \leq \inf _{\theta>0}\{\exp (-\theta t) E(\exp (\theta X))\}=\inf _{\theta>0}\left\{\exp \left(\lambda\left(e^{\theta}-1\right)-\theta t\right)\right\}
$$

since at the minimum point t^{*}

$$
\frac{\partial}{\partial \theta}\left(\lambda\left(e^{\theta}-1\right)-\theta t\right)=\lambda e^{\theta}-t=0
$$

with

$$
\frac{\partial^{2}}{\partial \theta^{2}}\left(\lambda\left(e^{\theta}-1\right)-\theta t\right)=\lambda e^{\theta}>0
$$

it follows that the function $\theta \mapsto\left(\lambda\left(e^{\theta}-1\right)-\theta t\right)$ is convex and the minimum is achieved at $\theta^{*}=\log (t)-\log (\lambda)$, and we get the Chentsov upper bound as

$$
P_{\theta}(X>t) \leq \exp (t-\lambda)\left(\frac{\lambda}{t}\right)^{t}
$$

