HU, Probability Theory Fall 2015, Solutions to Problems 5 (7.10.2015)

1. Consider the probability space $\Omega=[0,1]$ equipped with the Borel σ algebra $\mathcal{F}=\mathcal{B}([0,1])$ and the uniform probability measure \mathbb{P} such that $\mathbb{P}((a, b])=b-a$ for $0 \leq a \leq b \leq 1$, which is also called Lebesgue measure.

Show that the identity map $U: \Omega \rightarrow[0,1]$ with $U(\omega)=\omega$ is an uniformly distributed random variable, which means
$\mathbb{P}(\{\omega: U(\omega) \in(a, b]\})=b-a$.
Solution This is trivial, since $\omega \rightarrow U(\omega)$ is the identity map on $[0,1]$:

$$
\mathbb{P}(\{\omega: U(\omega) \in(a, b]\})=\mathbb{P}(\omega: \omega \in(a, b])=\mathbb{P}((a, b])=b-a
$$

when $0 \leq a \leq b \leq 1$.
Let now $(\Omega, \mathcal{F}, \mathbb{P})$ be an abstract probability space and $U: \Omega \rightarrow[0,1]$ a random variable with uniform distribution on $[0,1]$, which means $\mathbb{P}(\{\omega: U(\omega) \in(a, b]\})=b-a$.
Let $F: \mathbb{R} \rightarrow[0,1]$ a cumulative probability distribution function (c.d.f.), which is right continuous, non-decreasing with $F(+\infty)=1$ and $F(-\infty)=0$.
We shall construct a random variable on (Ω, \mathcal{F}) with values in $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that

$$
\mathbb{P}(\{\omega: X(\omega) \leq t\})=F(t)
$$

Assume for simplicity that $F(t)$ is continuous and stricty increasing, with $F(s)<F(t) \forall s<t$.
In this case there is an unique inverse $F^{-1}:[0,1] \rightarrow \mathbb{R}$ such that $F\left(F^{-1}(u)\right)=u \forall u \in[0,1]$ and $F^{-1}(F(t))=t \forall t \in \mathbb{R}$.
Show that $X(\omega)=F^{-1}(U(\omega))$ is a random variable with
$P(\{X(\omega) \leq t\})=F(t)$.
Using a generalized inverse, this construction extends also to the general cumulative distribution function, which does not need to be continous from the left neither strictly increasing.
Solution $\mathbb{P}(X(\omega) \leq t)=\mathbb{P}\left(F^{-1}(U) \leq t\right)=\mathbb{P}\left(F\left(F^{-1}(U) \leq F(t)\right)=\right.$ $\mathbb{P}(U \leq F(t))=F(t)$. When F is not continuous strictly increasing, it
can have jumps, which corresponds to points t with $\Delta F(t)=\mathbb{P}(\{X=$ $t\})>0$, and also $\mathbb{P}(X \in(a, b])=0$ for intervals with $F(a)=F(b)$.
In such cases we define the generalized inverse as

$$
F^{-1}(u)=\sup \{t: F(t) \leq u\}=\inf \{t: F(t)>u\}
$$

Note that when $\Delta F(t)>0 F^{-1}(u)=t \Longleftrightarrow u \in[F(t-), F(t)]$, and $\mathbb{P}\left(F^{-1}(U)=t\right)=\mathbb{P}(U \in[F(t-), F(t)])=\Delta F(t)$.
Also when $F(a)=F(b), \mathbb{P}\left(F^{-1}(U) \in(a, b]\right)=\mathbb{P}(U=F(b))=0$.
Then

$$
\begin{aligned}
& \mathbb{P}\left(u: F^{-1}(u) \leq t\right)=\mathbb{P}(u: \sup \{s: F(s) \leq u\} \leq t) \\
& =\mathbb{P}(u: F(s) \leq u \Longrightarrow s \leq t)=\mathbb{P}(u: u \leq F(t))=F(t)
\end{aligned}
$$

This construction of a random variable with given cumulative distribution function on the probability space $\Omega=[0,1]$ equipped with the uniform probability is called Skorokhod representation. It can be used simultaneously for several distributions $F_{1}(t), \ldots, F_{n}(t)$ to construct by using the same uniform random variable $U(\omega)$ a coupling $\left.X_{1}(\omega)=F_{1}^{-1}(U(\omega)), \ldots, X_{n}(\omega)=F_{n}^{-1}(U(\omega))\right)$, where the variables are dependent with given marginals distributions $F_{i}(t), i=1, \ldots, n$.
2. On an abstract probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\omega) \geq 0 \forall \omega \in \Omega$ a non-negative random variable.
We have defined the expectation of as

$$
E_{\mathbb{P}}(X)=\sup _{0 \leq Y \leq X, \text { with } Y \in \mathcal{S} F^{+}} E_{\mathbb{P}}(Y)
$$

where the supremum is taken over the simple random variables Y (taking finitely many values) such that $0 \leq Y(\omega) \leq X(\omega) \forall \omega \in \Omega$
Assume that $X(\omega) \in \mathbb{N} \forall \omega \in \Omega$.
(a) Show that

$$
E_{\mathbb{P}}(X)=\sum_{n=1}^{\infty} n \mathbb{P}(\{\omega: X(\omega)=n\})=\sum_{n=1}^{\infty} n P_{X}(\{n\})
$$

where $P_{X}(\{n\})=\mathbb{P}(\{\omega: X(\omega)=n\})$ is the distribution of X with $E_{\mathbb{P}}(X) \in[0,+\infty]$ (the series may also diverge).
(b) Show one non-trivial example with $X(\omega)$ taking countably many values in \mathbb{N} and choosing the distribution of $X P_{X}(\{n\})$ such that $E_{\mathbb{P}}(X)<\infty$, and another example where $E_{\mathbb{P}}(X)=+\infty$.

Solution Of course this follows by applying the monotone convergence Theorem, but we are asked to give a direct short proof without using the theorem. Let $0 \leq Y^{(N)}(\omega) \leq X(\omega)$ a sequence of simple random variables such that $E_{\mathbb{P}}\left(Y^{(N)}\right) \rightarrow E_{\mathbb{P}}(X)$. Note that this approximating sequence does not need to be monotone ! One can always obtain a monotone sequence by taking

$$
0 \leq Y^{(N)}(\omega) \leq \hat{Y}^{(N)}(\omega):=\max _{k \leq N} \hat{Y}^{(k)}(\omega) \leq \hat{Y}^{(N+1)}(\omega) \leq X(\omega)
$$

and since the expectation of simple random variables is a positive operator

$$
0 \leq E_{\mathbb{P}}\left(Y^{(N)}\right) \leq E_{\mathbb{P}}\left(\hat{Y}^{(N)}\right) \leq E_{\mathbb{P}}\left(\hat{Y}^{(N+1)}\right) \leq E_{\mathbb{P}}(X)
$$

where $E_{\mathbb{P}}\left(Y^{(N)}\right) \rightarrow E_{\mathbb{P}}(X)$ implies that $E_{\mathbb{P}}\left(Y^{(N)}\right) \uparrow E_{\mathbb{P}}(X)$ monotonically.
By the definition of the expectation such sequence exists, since

$$
E_{\mathbb{P}}(X)=\sup _{0 \leq Y \leq X}\left\{E_{\mathbb{P}}(Y)\right\}
$$

where the supremum is taken over the simple random variables. Since each $Y^{(N)}$ takes finitely many values, it is a bounded random variable, $0 \leq Y^{(N)}(\omega) \leq K_{N} \forall \omega \in \mathbb{N}$. By repeating elements of the sequence we can find another subsequence of simple random variables with $0 \leq$ $\widetilde{Y}^{(N)} \leq X(\omega), \widetilde{Y}^{(N)}(\omega) \leq N \forall N \in \mathbb{N}$ and $E_{\mathbb{P}}\left(\widetilde{Y}^{(N)}\right) \rightarrow E_{\mathbb{P}}(X)$.
But then $Y^{(N)}(\omega) \leq X(\omega) \wedge N$ where on the right hand side we have also a simple random variable. Now since the expectation is a positive operator on the space of simple random variables

$$
E_{\mathbb{P}}\left(Y^{(N)}\right) \leq E_{\mathbb{P}}(X \wedge N)=\sum_{k=0}^{N} k \mathbb{P}(X=k) \uparrow \sum_{k=0}^{\infty} k \mathbb{P}(X=k),
$$

and since $E_{\mathbb{P}}\left(Y^{(N)}\right) \rightarrow E_{\mathbb{P}}(X)$, necessarily

$$
E_{\mathbb{P}}(X)=\sum_{k=0}^{\infty} k \mathbb{P}(X=k) .
$$

3. On an abstract probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
let $N(\omega)$ be a Poisson distributed random variable with parameter $\lambda>$ 0 , such that

$$
\mathbb{P}(\{\omega: N(\omega)=k\})=P_{\lambda}(\{k\})=\exp (-\lambda) \frac{\lambda^{k}}{k!}
$$

(a) Check that $\left(P_{\lambda}(\{k\}): k \in \mathbb{N}\right)$ defines a probability distribution on $\mathbb{N}=\{0,1,2, \ldots\}$, in particular that $P_{\lambda}(\mathbb{N})=1$.
Solution :

$$
P_{\lambda}(\mathbb{N})=\sum_{k=0}^{\infty} \mathbb{P}_{\lambda}(\{k\})=\exp (-\lambda) \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}=\exp (-\lambda) \exp (\lambda)=1
$$

(b) Compute the moment generating function $m: \mathbb{R} \rightarrow[0, \infty]$

$$
m(\theta)=E_{\mathbb{P}}(\exp (\theta N)), \quad \theta \in \mathbb{R}
$$

Solution :

$$
\begin{aligned}
& E_{\mathbb{P}}(\exp (\theta N))=\sum_{k=0}^{\infty} \exp (\theta k) \mathbb{P}_{\lambda}(\{k\})=\exp (-\lambda) \sum_{k=0}^{\infty} \frac{(\lambda \exp (\theta))^{k}}{k!}= \\
& \exp (-\lambda) \exp \left(\lambda e^{\theta}\right)=\exp \left(\lambda\left(e^{\theta}-1\right)\right)
\end{aligned}
$$

(c) Prove the following Stein equation for the Poisson distribution:

$$
\lambda E_{\mathbb{P}}(g(N+1))=E_{\mathbb{P}}(N g(N))
$$

for every bounded sequence $\left(g_{k}: k \in \mathbb{N}\right) \subseteq \mathbb{R}$.

Solution

$$
\begin{aligned}
& \lambda E_{\mathbb{P}}(g(N+1))=\lambda \exp (-\lambda) \sum_{n=0}^{\infty} g(k+1) \frac{\lambda^{k}}{k!} \\
& =\lambda \exp (-\lambda) \sum_{k=1}^{\infty} g(k) \frac{\lambda^{k-1}}{(k-1)!}=\exp (-\lambda) \sum_{k=0}^{\infty} g(k) k \frac{\lambda^{k}}{k!}=E_{\mathbb{P}}(N g(N))
\end{aligned}
$$

(d) Compute the expectations (moments) $\mathbb{E}_{\mathbb{P}}\left(N^{q}\right)$ for $q \in \mathbb{N}$.

Solution We just give a recursive formula by using Stein equation. When $g_{n}=1$

$$
E_{\mathbb{P}}(N)=E_{\mathbb{P}}(N g(N))=E_{\mathbb{P}}(\lambda g(N+1))=\lambda
$$

When $g_{n}=n^{q}, q \geq 0$

$$
\begin{aligned}
& E_{\mathbb{P}}\left(N^{q+1}\right)=E_{\mathbb{P}}\left(N N^{q}\right)=E_{\mathbb{P}}(N g(N))=\lambda E_{\mathbb{P}}(g(N+1)) \\
& =\lambda E_{\mathbb{P}}\left((N+1)^{q}\right)=\lambda \sum_{k=0}^{q}\binom{q}{k} E\left(N^{k}\right)
\end{aligned}
$$

For example for $q=1, E_{\mathbb{P}}\left(N^{2}\right)=\lambda\left(E_{\mathbb{P}}(N)+1\right)=\lambda^{2}+\lambda$.
For $q=2 E_{\mathbb{P}}\left(N^{3}\right)=\lambda\left(E_{\mathbb{P}}\left(N^{2}\right)+2 E_{\mathbb{P}}(N)+1\right)=\lambda^{3}+3 \lambda^{3}+\lambda$
(e) Compute the expectations $\mathbb{E}_{\mathbb{P}}\left(N^{q} \exp (\theta N)\right)$ for $\theta \in \mathbb{R}$ and $q \in \mathbb{N}$.

Solution For $q=0$ we have already computed $E_{\mathbb{P}}(\exp (\theta N))=$ $\exp \left(\lambda\left(e^{\theta}-1\right)\right)$.
When $g_{n}=n^{q} \exp (\theta n), q \geq 0$.

$$
\begin{aligned}
& E_{\mathbb{P}}\left(N^{q+1} \exp (\theta N)\right)=E_{\mathbb{P}}\left(N N^{q} \exp (\theta N)\right)=E_{\mathbb{P}}(N g(N)) \\
& =\lambda E_{\mathbb{P}}(g(N+1))=\lambda E_{\mathbb{P}}\left((N+1)^{q} \exp (\theta N+1)\right) \\
& =\lambda e^{\theta} E_{\lambda}\left((N+1)^{q} \exp (\theta N)\right)=\lambda e^{\theta} \sum_{k=0}^{q}\binom{q}{k} E_{\lambda}\left(N^{k} \exp (\theta N)\right)
\end{aligned}
$$

For example for $q=1$ we get

$$
E_{\mathbb{P}}(N \exp (\theta N))=\lambda \exp \left(\lambda\left(e^{\theta}-1\right)+\theta\right)
$$

For $q=2$
$E_{\mathbb{P}}\left(N^{2} \exp (\theta N)\right)=\lambda e^{\theta} E((N+1) \exp (\theta N))=\lambda \exp \left(\lambda\left(e^{\theta}-1\right)+\theta\right)\left(1+\lambda e^{\theta}\right)$
Alternatively, we could use a change of measure. Note that if $\psi>0$ is the parameter of another Poisson distribution P_{ψ}, we have that $P_{\psi} \sim \Psi_{\theta}$ are equivalent (absolutely continuous with respect to each other) with likelihood ratio

$$
Z(n)=\frac{d P_{\psi}}{d P_{\lambda}}(n)=\frac{P_{\psi}(\{n\})}{P_{\lambda}(\{n\})}=\left(\frac{\psi}{\lambda}\right)^{n} \exp (\lambda-\psi)
$$

Therefore by the change of measure formula, for $\psi=\lambda e^{\theta}$

$$
\begin{aligned}
& \mathbb{E}_{\lambda}\left(N^{q} \exp (\theta N)\right)=\mathbb{E}_{\lambda}\left(N^{q}\left(\frac{\psi}{\lambda}\right)^{N}\right)=\mathbb{E}_{\lambda}\left(N^{q} Z(N)\right) \exp \left(\lambda\left(e^{\theta}-1\right)\right) \\
& =\mathbb{E}_{\lambda}\left(N^{q} \frac{d P_{\psi}}{d P_{\lambda}}(N)\right) \exp \left(\lambda\left(e^{\theta}-1\right)\right) \\
& =\mathbb{E}_{\psi}\left(N^{q}\right) \exp \left(\lambda\left(e^{\theta}-1\right)\right)=\lambda \exp \left(\lambda\left(e^{\theta}-1\right)+\theta\right) \sum_{k=0}^{q-1}\binom{q-1}{k} E_{\psi}\left(N^{k}\right) \\
& =\lambda e^{\theta} \sum_{k=0}^{q-1}\binom{q-1}{k} E_{\lambda}\left(N^{k} \exp (\theta N)\right)
\end{aligned}
$$

