
HU, Probability Theory Fall 2015, Solutions to Problems 5
(7.10.2015)

1. Consider the probability space Ω = [0, 1] equipped with the Borel σ-
algebra F = B([0, 1]) and the uniform probability measure P such that
P((a, b]) = b − a for 0 ≤ a ≤ b ≤ 1, which is also called Lebesgue
measure.

Show that the identity map U : Ω → [0, 1] with U(ω) = ω is an
uniformly distributed random variable, which means

P({ ω : U(ω) ∈ (a, b]}) = b− a.
Solution This is trivial, since ω → U(ω) is the identity map on [0, 1]:

P({ ω : U(ω) ∈ (a, b]}) = P(ω : ω ∈ (a, b]) = P((a, b]) = b− a

when 0 ≤ a ≤ b ≤ 1.

Let now (Ω,F ,P) be an abstract probability space and U : Ω → [0, 1]
a random variable with uniform distribution on [0, 1], which means
P({ ω : U(ω) ∈ (a, b]}) = b− a.
Let F : R → [0, 1] a cumulative probability distribution function
(c.d.f.), which is right continuous, non-decreasing with F (+∞) = 1
and F (−∞) = 0.

We shall construct a random variable on (Ω,F) with values in (R,B(R))
such that

P({ω : X(ω) ≤ t}) = F (t)

Assume for simplicity that F (t) is continuous and stricty increasing,
with F (s) < F (t) ∀s < t.

In this case there is an unique inverse F−1 : [0, 1] → R such that
F (F−1(u)) = u ∀u ∈ [0, 1] and F−1(F (t)) = t ∀t ∈ R.
Show that X(ω) = F−1(U(ω)) is a random variable with

P ({X(ω) ≤ t}) = F (t).

Using a generalized inverse, this construction extends also to the general
cumulative distribution function, which does not need to be continous
from the left neither strictly increasing.

Solution P(X(ω) ≤ t) = P(F−1(U) ≤ t) = P(F (F−1(U) ≤ F (t)) =
P(U ≤ F (t)) = F (t). When F is not continuous strictly increasing, it
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can have jumps, which corresponds to points t with ∆F (t) = P({X =
t}) > 0, and also P(X ∈ (a, b]) = 0 for intervals with F (a) = F (b).

In such cases we define the generalized inverse as

F−1(u) = sup{t : F (t) ≤ u} = inf{t : F (t) > u}

Note that when ∆F (t) > 0 F−1(u) = t ⇐⇒ u ∈ [F (t−), F (t)], and
P(F−1(U) = t) = P(U ∈ [F (t−), F (t)]) = ∆F (t).

Also when F (a) = F (b), P(F−1(U) ∈ (a, b]) = P(U = F (b)) = 0.

Then

P(u : F−1(u) ≤ t) = P(u : sup{s : F (s) ≤ u} ≤ t)

= P(u : F (s) ≤ u =⇒ s ≤ t) = P(u : u ≤ F (t)) = F (t)

This construction of a random variable with given cumulative distri-
bution function on the probability space Ω = [0, 1] equipped with
the uniform probability is called Skorokhod representation. It can be
used simultaneously for several distributions F1(t), . . . , Fn(t) to con-
struct by using the same uniform random variable U(ω) a coupling
X1(ω) = F−11 (U(ω)), . . . , Xn(ω) = F−1n (U(ω))

)
, where the variables

are dependent with given marginals distributions Fi(t), i = 1, . . . , n.

2. On an abstract probability space (Ω,F ,P), let X(ω) ≥ 0 ∀ω ∈ Ω a
non-negative random variable.

We have defined the expectation of as

EP(X) = sup
0≤Y≤X, with Y ∈SF+

EP(Y )

where the supremum is taken over the simple random variables Y (ta-
king finitely many values) such that 0 ≤ Y (ω) ≤ X(ω) ∀ω ∈ Ω

Assume that X(ω) ∈ N ∀ω ∈ Ω.

(a) Show that

EP(X) =
∞∑
n=1

nP({ ω : X(ω) = n}) =
∞∑
n=1

nPX({n})

where PX({n}) = P({ω : X(ω) = n}) is the distribution of X
with EP(X) ∈ [0,+∞] ( the series may also diverge ).
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(b) Show one non-trivial example with X(ω) taking countably many
values in N and choosing the distribution of X PX({n}) such that
EP(X) <∞, and another example where EP(X) = +∞.

Solution Of course this follows by applying the monotone convergence
Theorem, but we are asked to give a direct short proof without using
the theorem. Let 0 ≤ Y (N)(ω) ≤ X(ω) a sequence of simple random
variables such that EP(Y (N)) → EP(X). Note that this approximating
sequence does not need to be monotone ! One can always obtain a
monotone sequence by taking

0 ≤ Y (N)(ω) ≤ Ŷ (N)(ω) := max
k≤N

Ŷ (k)(ω) ≤ Ŷ (N+1)(ω) ≤ X(ω)

and since the expectation of simple random variables is a positive ope-
rator

0 ≤ EP
(
Y (N)

)
≤ EP

(
Ŷ (N)

)
≤ EP

(
Ŷ (N+1)

)
≤ EP(X)

where EP
(
Y (N)

)
→ EP(X) implies that EP

(
Y (N)

)
↑ EP(X) monoto-

nically.

By the definition of the expectation such sequence exists, since

EP(X) = sup
0≤Y≤X

{
EP(Y )

}
where the supremum is taken over the simple random variables. Since
each Y (N) takes finitely many values, it is a bounded random variable,
0 ≤ Y (N)(ω) ≤ KN ∀ω ∈ N. By repeating elements of the sequence
we can find another subsequence of simple random variables with 0 ≤
Ỹ (N) ≤ X(ω), Ỹ (N)(ω) ≤ N ∀N ∈ N and EP(Ỹ (N))→ EP(X).

But then Y (N)(ω) ≤ X(ω) ∧ N where on the right hand side we have
also a simple random variable. Now since the expectation is a positive
operator on the space of simple random variables

EP(Y (N)) ≤ EP(X ∧N) =
N∑
k=0

kP(X = k) ↑
∞∑
k=0

kP(X = k) ,

and since EP(Y (N))→ EP(X), necessarily

EP(X) =
∞∑
k=0

kP(X = k) .
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3. On an abstract probability space (Ω,F ,P),

let N(ω) be a Poisson distributed random variable with parameter λ >
0, such that

P({ω : N(ω) = k}) = Pλ({k}) = exp(−λ)
λk

k!

(a) Check that (Pλ({k}) : k ∈ N) defines a probability distribution on
N = {0, 1, 2, . . . }, in particular that Pλ(N) = 1.
Solution :

Pλ(N) =
∞∑
k=0

Pλ({k}) = exp(−λ)
∞∑
k=0

λk

k!
= exp(−λ) exp(λ) = 1

(b) Compute the moment generating function m : R→ [0,∞]

m(θ) = EP
(
exp(θN)

)
, θ ∈ R.

Solution :

EP
(
exp(θN)

)
=
∞∑
k=0

exp(θk)Pλ({k}) = exp(−λ)
∞∑
k=0

(
λ exp(θ)

)k
k!

=

exp(−λ) exp
(
λeθ
)

= exp
(
λ(eθ − 1)

)
(c) Prove the following Stein equation for the Poisson distribution:

λEP(g(N + 1)) = EP(Ng(N))

for every bounded sequence (gk : k ∈ N) ⊆ R.
Solution

λEP(g(N + 1)) = λ exp(−λ)
∞∑
n=0

g(k + 1)
λk

k!

= λ exp(−λ)
∞∑
k=1

g(k)
λk−1

(k − 1)!
= exp(−λ)

∞∑
k=0

g(k)k
λk

k!
= EP(Ng(N))

(d) Compute the expectations (moments) EP(N q) for q ∈ N.
Solution We just give a recursive formula by using Stein equa-
tion. When gn = 1

EP(N) = EP(Ng(N)) = EP(λg(N + 1)) = λ
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When gn = nq, q ≥ 0

EP(N q+1) = EP(NN q) = EP(Ng(N)) = λEP(g(N + 1))

= λEP((N + 1)q) = λ

q∑
k=0

(
q

k

)
E(Nk)

For example for q = 1, EP(N2) = λ(EP(N) + 1) = λ2 + λ.
For q = 2 EP(N3) = λ

(
EP(N2) + 2EP(N) + 1

)
= λ3 + 3λ3 + λ

(e) Compute the expectations EP
(
N q exp(θN)

)
for θ ∈ R and q ∈ N.

Solution For q = 0 we have already computed EP(exp(θN)) =
exp(λ(eθ − 1)).
When gn = nq exp(θn), q ≥ 0.

EP(N q+1 exp(θN)) = EP(NN q exp(θN)) = EP(Ng(N))

= λEP(g(N + 1)) = λEP((N + 1)q exp(θN + 1))

= λeθEλ((N + 1)q exp(θN)) = λeθ
q∑

k=0

(
q

k

)
Eλ(N

k exp(θN))

For example for q = 1 we get

EP(N exp(θN)) = λ exp(λ(eθ − 1) + θ)

For q = 2

EP(N2 exp(θN)) = λeθE((N + 1) exp(θN)) = λ exp(λ(eθ − 1) + θ)(1 + λeθ)

Alternatively, we could use a change of measure. Note that if ψ > 0
is the parameter of another Poisson distribution Pψ, we have that
Pψ ∼ Ψθ are equivalent (absolutely continuous with respect to
each other) with likelihood ratio

Z(n) =
dPψ
dPλ

(n) =
Pψ({n} )

Pλ({n} )
=

(
ψ

λ

)n
exp(λ− ψ)
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Therefore by the change of measure formula, for ψ = λeθ

Eλ
(
N q exp(θN)

)
= Eλ

(
N q

(
ψ

λ

)N)
= Eλ

(
N qZ(N)

)
exp

(
λ(eθ − 1)

)
= Eλ

(
N q dPψ

dPλ
(N)

)
exp

(
λ(eθ − 1)

)
= Eψ

(
N q
)

exp
(
λ(eθ − 1)

)
= λ exp

(
λ(eθ − 1) + θ

) q−1∑
k=0

(
q − 1

k

)
Eψ
(
Nk
)

= λeθ
q−1∑
k=0

(
q − 1

k

)
Eλ
(
Nk exp(θN)

)
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