
HU, Probability Theory Fall 2015, Solutions to Problems 4
(30.9.2015)

1. Prove that if P is a probability measure on Ω = Rd equipped with
the Borel σ-algebra B(Rd), every Borel set B ∈ B(Rd) satisfies the
following Approximation Property : for every ε > 0 there is an
open set U ⊆ Rd and a closed set C ⊆ Rd such that U ⊇ B ⊇ C and
P(U \ C) ≤ ε.

To show that consider the class of events

D =
{
B ∈ B(Rd) which has the Approximation property

}
⊆ B(Rd).

• Show first that the class

C = { C ⊆ Rd, C closed } ⊂ D

and it is a π-class (closed under intersections ).
Solution: C is a π-class since the arbitrary intersection of closed
set is closed. Note that the finite union of closed sets is closed but
the infinite union of closed sets if not always closed, for example⋃

n≥1

[−1 + 1/n, 1− 1/n] = (−1, 1) open

Hint if C is closed, let Cε = { y : ∃x ∈ C with |x− y| < ε} ⊇ C
Show that Cε is open and

C =
⋂
n∈N

C1/n

Use the σ-addivity of P to show that C has the Approximation
propery.
Solution Cε is open: if y ∈ Cε, there exists x ∈ C with |x−y| < ε.
Then y ∈ B(x, ε) = {z ∈ Rd : |x− z| < ε} ⊆ Cε, where B(x, ε) is
an open ball.
Therefore we have C1/n ⊇ C1/(n+1) ⊇ C with C1/n open and C
closed.
Moreover

C =
⋂
n∈N

C1/n
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since C1/n ⊇ C ∀n, and if y ∈
⋃
n∈NC

1/n, there is a sequence
{xn :∈ N} ⊆ C with |xn − y| < 1/n. Therefore limn→∞ xn = y,
and since C is closed necessarily y ∈ C.
Consider now the sequence of events (Cn \ C) ↓ ∅. Note that
Cn\C = Cn∩Cc is an open set, in particular it is Borel measurable.
Since P is σ-additive, P(Cn\) ↓ 0 , which means P (Cn \ C) < ε
for n large enoufg that all the closed set have the approximation
property and are in the class D.

• Then show that D is a Dynkin class.
Solution We show directly that it is a σ-algebra. Ω = Rd is both
an open and a closed set, therefore we can take U = Rd = C to
see that it has trivially the approximation property.
When A ∈ D, there are U open and C closed with U ⊇ A ⊇ C
and P(U \ C) < ε. Then U c ⊆ Ac ⊆ Cc with Cc open and U c

closed, and Cc \ U c = Cc ∩ (U c)c = Cc ∩ U = U \ C, so that
P(Cc \ U c) = P(U \ C) = ε.
Let (An : n ∈ N) ⊆ D, with An ∩ Am = ∅ ∀m 6= n, and let
A =

⋃
n∈NAn.

Since P is σ-additive, P(A) =
∑

n∈N P(An) ≤ 1 which implies that
limn→∞ P(An) = 0.
Therefore ∀ε > 0 ∃Nε such that P(An) ≤ ε ∀n ≥ Nε.
Since (An : n ∈ N) ⊆ D, there are open sets Un and closed sets
Cn such that Un ⊇ An ⊇ Cn ∀n and

P(Un \ Cn) ≤ ε2−n

Take now U =
⋃
n∈N Un which is open since the arbitrary union of

open sets is open,
Then

P(U \ A) = P
(⋃
n∈N

Un \
⋃
m∈N

Am

)
≤ P

(⋃
n∈N

Un \ An
)

≤
∑
n∈N

P(Un \ An) ≤ ε
∑
n∈N

2−n = ε

Take also C =
⋃N
n=1Cn which is closed since the finite union of

closed sets is closed ( infinite unions are not always closed), and
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U ⊇ A ⊇ C. Then

P(A \ C) = P
(⋃
n>N

An

)
+ P

((⋃
n≤N

An

)
\ Cn

)

≤
∑
n>N

P(An) + P
(⋃
n≤N

An \ Cn
)
≤ ε+ ε

N∑
n=1

2−n ≤ 2ε

Moreover U \ C = (U \ A) ∪ (A \ C) where the union is disjoint.
P(U \ C) = P(U \ A) + P(A \ C) ≤ 3ε.

• Use Dynkin lemma to conclude that all Borel sets have the Ap-
proximation property.
Solutions D ⊆ B(Rd) by definition and D is a σ-algebra contai-
ning the closed sets, which means it must contain the σ-algebra
generated by the closed sets, which is the Borel σ-algebra B(Rd).

• Prove also that when B ∈ B(Rd) is a Borel set, ∀ε > 0 one can
find an open set U and a compact set K with U ≥ B ≥ K and
P(U \K) < ε.
Consider the sequence of closed balls

Kn = B(0, n) = { x : |x| ≤ n}

. These are compact, since in Rd a set is compact if and only if it
is bounded and closed, and

Ω = Rd =
⋃
n∈N

Kn

.
Since Kc

n ↓ ∅, since P is σ-additive P(Kc
n) ↓ 0.

Let B a Borel set and given ε > 0 let be U an open and C a closed
set such that U ⊇ B ⊇ C and P(U \ C) < ε.
Let n large enough such that P(Kc

n) < ε, and let K = C ∩ Kn.
K ⊆ B is compact because it is closed and bounded, and

P(U \K) = P(U ∩Kc) = P(U ∩ (Cc ∪Kc
n)) = P((U ∩ Cc) ∪ (U ∩Kc

n))

≤ P (U \ C) + P(Kc
n) < 2ε

Remark We have used the Approximation property of the Borel sets
in the proof of Kolmogorov extension Theorem.

3



2. Let f : R → R a non-decreasing function, f(s) ≤ f(t) when s ≤ t.
Show that f is Borel measurable, which means that for every Borel set
B ∈ B(R), the counterimage f−1(B) := { t : f(t) ∈ B} is a Borel set.

Solution Note that f is not invertible since it could be non-decreasing
without being stricly increasing.

Define the generalized inverse of f as

f inv(t) = sup{x : f(x) ≤ t}

Then we have two possible situations: the counterimage of the interval
(−∞, t] is either
f−1((−∞, t]) = {x : f(x) ≤ t} = (−∞, f inv(t)]
or

f−1((−∞, t]) = {x : f(x) ≤ t} = (−∞, f inv(t)).
In each case it is a Borel set.

Now the class

D := {B ∈ B(R) : f−1(B) ∈ B(R)} ⊇ C = { (−∞, t] : t ∈ R}

contains C which is a π-system. It is easy to check that D is a Dynkin
class, which by Dynkin lemma implies

B(R) = σ(C) ⊆ D ⊆ B(R)

.

3. On a probability space (Ω,F ,P), let (An : n ∈ N) be any sequence of
pairwise disjoint events, which means Ai ∩ Aj = ∅ when i 6= j. Show
that lim

n→∞
P(An) = 0.

Solution by σ-additivity:

1 ≥ P
(⋃
n∈N

An

)
=
∑
n∈N

P(An)

since the series has positive terms and it is convergent, necessarily
lim
n→∞

P(An) = 0.

4. On a probability space (Ω,F ,P), let (Aα, α ∈ I) be a family of pairwise
disjoint events, indexed by an index set I. Show that if P(Aα) > 0
∀α ∈ I, then I must be countable.
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Hint: show that ∀n ∈ N the set In := {α : P(Aα) > 1/n} is finite .

Solution Suppose that In is infinite, containing a countable set J .
Then

1 ≥ P
(⋃
j∈J

Aj

)
=
∑
j∈J

P
(
Aj
)
≥ #J

n
= +∞

which gives a contradiction. Thereofore each In is finite, and

I =
⋃
n∈N

In

is at most countable because it is the countable union of finite sets.

5. Let P a probability on Ω = R equipped with the Borel σ-algebra
B(R). We have shown the cumulative distribution function F (t) =
P
(
(−∞, t]

)
is right-continuous, which means

F (t+) = lim
u↓t

F (u) = F (t) ∀t ∈ R .

Denote the jump size of F at t by ∆F (t) = F (t)−F (t−) where F (t−) =
lims↑t F (s) is the limit from the left.

(a) Show that P({t} ) = ∆F (t).
Solution The singleton has the representation {t} =

⋂
n∈N(t −

1/n, t]. In otherwords, (t− 1/n, t] ↓ { t}. and by σ-additivity

P ({t}) = lim
n→∞

P((t− 1/n, t]) = lim
n→∞

(
F (t)− F (t− 1/n)

)
= F (t)− F (t−)

where F (t−) = lims↑t F (s) is the limit from the left.

(b) Show that the set of discontinuities J =
{
t ∈ R : ∆F (t) > 0

}
is

at most countable.
Solution Let

Jn = {t ∈ R : ∆F (t) > 1/n}

Since

F (+∞) = 1 ≥
∑
t∈Jn

∆F (t) ≥ #Jn
n

which implies that ∀n Jn is a finite set. Therefore J is at most
countable, because it is the countable union of finite sets.
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6. Suppose a function F : R→ [0, 1] is given by

F (t) =
∞∑
n=1

2−n1(t ≥ 1/n)

(a) Show that F (t) the cumulative distribution function of a proba-
bility P on (R,B(R)).
Solution

F (−∞) = F (0) =
∞∑
n=1

2−n1(0 ≥ 1/n) = 0

F (+∞) = F (1) =
∞∑
n=1

2−n1(1 ≥ 1/n) =
∞∑
n=1

2−n =
1/2

1− 1/2
= 1

When s ≤ t , 1(s ≥ 1/n) ≤ 1(t ≥ 1/n) and F (s) ≤ F (t).
Note that F (N)(u) =

∑N
n=1 2−n1(u ≥ 1/n) is non-decreasing with

respect toN and non-increasing with repsect to u, therefore F (N)(u)
is non-decreasing as N ↑ ∞ and u ↓ t and we can switch the order
of the limits to prove that t 7→ F (t) is right continuous:

lim
u↓t

F (u) = lim
u↓t

lim
N↑∞

F (N)(u) = lim
N↑∞

lim
u↓t

F (N)(u) = lim
N↑∞

F (N)(t) = F (t)

where the indicators of the [1/n,∞) intervals are right-continuous:

lim
u↓t

1[1/n,∞)(u) = 1[1/n,∞)(t) .

Note that P is discrete with probability mass 2−n = F (n−1) −
F (n−1−) at the points n−1 for each n ∈ N.
For such P , compute the probabilities of the following events:

• A = [1,∞),
Solution P (A) =

∑
n:1/n∈A P ({1/n}) =

∑
n:1/n≥1 P ({1/n}) =

P ({1}) = 1/2.
• B = [1/10,∞),

Solution

P (B) =
∑

n:1/n∈B

P ({1/n}) =
∑

n:1/n≥1/10

P ({1/n}) =
∑

1≤n≤10

P ({1/n}) =

∑
1≤n≤10

2−n = (1− 2−10)
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• C = { 0}, Solution

P (C) =
∑

n:1/n∈C

P ({1/n}) =
∑
n∈∅

P ({1/n}) = 0

• D = [0, 1/2),
Solution

P (D) =
∑

n:1/n∈D

P ({1/n}) =
∑

n:1/n<1/2

P ({1/n}) =
∑
n:n>2

P ({1/n})

= 1−
∑
n:n≤2

P ({1/n}) = 1− P ({1})− P ({1/2}) = 1− 1/2− 1/4 = 1/4

• E = (−∞, 0)
Solution P (E) =

∑
n:1/n∈E P ({1/n}) =

∑
n∈∅ P ({1/n}) = 0,

• G = (0,∞).
Solution 1 ≤ P (G) ≥ P ((0, 1]) =

∑
n:1/n∈(0,1] P ({1/n}) =∑

n≥1 2−n = 1, and P (G) = 1.

(b) Define a random variable X on a probability space (Ω,F ,P) of
your choice, with a probability P of your choice, such that the
distribution P({ω : X(ω) ≤ t}) = F (t).
Solution: you can always define the random variable as the identity
map X(ω) = ω in the space where it takes values, in this case R
equipped with the Borel σ-algebra B(R).
For the distribution defined by the cumulative distribution func-
tion F (t) above we can also take a random variable N on the
space Ω = N = {1, 2, 3, . . . } equipped with the probability mea-
sure P ({n}) = 2−n, defined as the identity N(n) = n, and then
take X(n) = 1/N(n) = 1/n.
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