HU, Probability Theory Fall 2015, Solutions to Problems 3 (23.9.2015)

(On the Cylinder algebra on an infinite product space).
Let S be an abstract probability space equipped with a σ-algebra \mathcal{S}, for example $S=\mathbb{R}^{d}$ and $\mathcal{S}=\mathcal{B}\left(\mathbb{R}^{d}\right)$, the Borel σ-algebra. and T an (infinite) arbitrary set. Consider the space $\Omega=S^{T}$, whose elements are the maps $\omega: T \rightarrow S$, with $t \mapsto \omega_{t} \in S$.

We can also understand Ω as the infinite product space $\Omega=\prod_{t \in T} S_{t}$, where each S_{t} is a copy of S.

A cylinder is an Ω-subset with representation

$$
\begin{equation*}
C=\left\{\omega:\left(\omega_{t_{1}}, \omega_{t_{2}} \ldots, \omega_{t_{d}}\right) \in B_{t_{1} \ldots t_{d}}\right\} \tag{0.1}
\end{equation*}
$$

for some $d \in \mathbb{N}, t_{1}, \ldots, t_{d} \in T$ and $B_{t_{1} \ldots t_{d}} \in \mathcal{S}^{\otimes d}=\underbrace{\mathcal{S} \otimes \mathcal{S} \otimes \cdots \otimes \mathcal{S}}_{d \text {-times }}$, the d-fold product of σ-algebrae. In other words, whether a function ω belongs to a cylinder C or not it is determined by its values on a finite number of coordinates.

Note that the cylinder representation (0.1) is not unique, for example the same cylinder C could be expressed as

$$
C=\left\{\omega:\left(\omega_{t_{1}}, \omega_{t_{2}} \ldots, \omega_{t_{d}}, \omega_{t_{d+1}}\right) \in B_{t_{1} \ldots t_{d}} \times S\right\}
$$

\mathbf{Q}_{1} : Show that the cylinders $\mathcal{C}=\{C \subseteq \Omega: C$ is a cylinder $\}$ form an algebra of Ω-events.

Solution

Note that $\Omega=S^{T} \in \mathcal{C}$ since it has representation $S^{T}=\left\{\omega:\left(\omega_{t_{1}}, \ldots, \omega_{t_{d}}\right) \in\right.$ $\left.S^{d}\right\}$ for every $\left\{t_{1}, \ldots, t_{d}\right\} \in T$ with $S^{d} \in \mathcal{S}^{\otimes d}$.
Consider C and $C \iota$ with representation

$$
C \prime=\left\{\omega:\left(\omega_{s_{1}}, \omega_{s_{2}} \ldots, \omega_{s_{m}}\right) \in A_{s_{1} \ldots s_{m}}\right\}
$$

By taking as common set of time indexes the union of the time indexes $\left\{u_{1}, \ldots, u_{k}\right\}:=\left\{t_{1}, \ldots, t_{d}\right\} \cup\left\{s_{1}, \ldots, s_{m}\right\}$ and taking if necessary products of $B_{t_{1}, \ldots, t_{d}}$ and $A_{s_{1}, \ldots, s_{m}}$ with S^{k-d} and S^{k-m} one can represent C and $C \prime$ using the same time-indexes as

$$
C=\left\{\omega:\left(\omega_{t_{1}}, \omega_{t_{2}} \ldots, \omega_{u_{d}}, \omega_{u_{k}}\right) \in B_{u_{1} \ldots u_{k}} \times S\right\}
$$

and

$$
C \prime=\left\{\omega:\left(\omega_{t_{1}}, \omega_{t_{2}} \ldots, \omega_{u_{d}}, \omega_{u_{k}}\right) \in A_{u_{1} \ldots u_{k}} \times S\right\}
$$

with $B_{u_{1}, \ldots, u_{k}}$ and $A_{u_{1}, \ldots, u_{k}}$ in the product σ-algebra $\mathcal{S}^{\otimes k}$, and the union has representation

$$
C \cup C \prime=\left\{\omega:\left(\omega_{t_{1}}, \omega_{t_{2}} \ldots, \omega_{u_{d}}, \omega_{u_{k}}\right) \in A_{u_{1} \ldots u_{k}} \cup B_{u_{1}, \ldots u_{k}} \times S\right\} \in \mathcal{C}
$$

with $A_{u_{1} \ldots u_{k}} \cup B_{u_{1}, \ldots u_{k}} \in \mathcal{S}^{\otimes k}$, and also the complement has representation

$$
C^{c}=\Omega \backslash C=\left\{\omega:\left(\omega_{t_{1}}, \omega_{t_{2}} \ldots, \omega_{u_{d}}, \omega_{u_{k}}\right) \in A_{u_{1} \ldots u_{k}}^{c}\right\} \in \mathcal{C}
$$

since $A_{u_{1} \ldots u_{k}}^{c}=S^{k} \backslash A_{u_{1} \ldots u_{k}} \in \mathcal{S}^{\otimes k}$.
\mathbf{Q}_{2} : However, the cylinders do not form a σ-algebra when T is infinite. Find an example where the countable intersection of cylinders is not a cylinder.
Solution Consider a sequence of distinct time-indexes $\left(t_{n}: n \in \mathbb{N}\right) \subset T$ and a sequence of sets $B_{n} \in \mathcal{S}$ with $B_{n} \neq S$ and $B_{n} \neq \emptyset$. For each n define the cylinder set

$$
C^{(n)}=\left\{\omega \in S^{T}: \omega_{t_{i}} \in B_{i} \text { for } 1 \leq i \leq n\right\}
$$

Then it follows that

$$
C^{(\infty)}:=\bigcap_{n \in \mathbb{N}} C^{(n)}=\left\{\omega \in S^{T}: \omega_{t_{i}} \in B_{i} \forall i \in \mathbb{N}\right\}
$$

is not a cylinder since it does not have a finite dimensional representation.

A consistent family \mathcal{P} of finite dimensional distribution is a collection of probability measures $P_{t_{1}, \ldots, t_{d}}$ on the respective product σ-algebrae $\mathcal{S}^{\otimes d}$ indexed by $t_{1}, t_{2}, \ldots, t_{d} \in T$, where d varies in \mathbb{N}, satisfying the properties:

$$
P_{t_{1}, \ldots, t_{d}}\left(B_{t_{1}} \times \cdots \times B_{t_{d}}\right)=P_{t_{\pi(1)}, \ldots, t_{\pi(d)}}\left(B_{t_{\pi}(1)} \times \cdots \times B_{t_{\pi(d)}}\right)=
$$

for every $d, t_{1}, \ldots, t_{d} \in T$ and π permutation of $\{1,2, \ldots, d\}$, and $B_{t_{i}} \in \mathcal{S}$.

$$
\begin{aligned}
& P_{t_{1}, \ldots, t_{d}}\left(B_{t_{1}, \ldots, t_{d}}\right)=P_{t_{1}, \ldots, t_{d}, t_{d+1}}\left(B_{t_{1}, \ldots, t_{d}} \times S\right)= \\
& \forall d, t_{1}, \ldots, t_{d}, t_{d+1} \in T \text { and } B_{t_{1} \ldots, t_{d}} \in \mathcal{S}^{\otimes d} .
\end{aligned}
$$

\mathbf{Q}_{3} : Show that the map

$$
\mathbb{P}_{0}: \mathcal{C} \rightarrow[0,1]
$$

with $\mathbb{P}_{0}(C)=P_{t_{1} \ldots t_{d}}\left(B_{t_{1} \ldots t_{d}}\right)$ for C with representation (0.1) is well defined, meaning that it does not depend on the particular representation of the cylinder C, and that \mathbb{P}^{0} is finitely additive on the algebra \mathcal{C}.

Solution The consistency property of the family of finite dimensional distribution is just what we need to make sure that for a cylinder $C \in \mathcal{C}$ $\mathbb{P}_{0}(C)$ does not depend on the particular representation.
To show finite additivity, that $\mathbb{P}_{0}\left(C \cup C^{\prime}\right)=\mathbb{P}_{0}(C)+\mathbb{P}_{0}\left(C^{\prime}\right)$ when $C, C^{\prime} \in \mathcal{C}$ with $C \cap C^{\prime}=\emptyset$, just represent C and C^{\prime} by using a common set of indexes $\left\{u_{1}, \ldots, u_{m}\right\} \subset T$, and then use the addivity of the finite dimensional distribution $P_{u_{1}, \ldots, u_{m}}$.
For each t, let Q_{t} a probability on (S, \mathcal{S}).
Define the family \mathcal{Q} of finite dimensional distributions
$Q_{t_{1} \ldots t_{d}}=Q_{t_{1}} \otimes Q_{t_{2}} \otimes \cdots \otimes Q_{t_{d}}$ as the product measure on the product space S^{d} equipped with product σ-algebra $\mathcal{S}^{\otimes d}$.
Q_{4} : Show that \mathcal{Q} is a consistent family of finite dimensional distributions.
Solution For the product measure $Q_{t_{1} \ldots t_{d}}=Q_{t_{1}} \otimes Q_{t_{2}} \otimes \cdots \otimes Q_{t_{d}}$ on $\mathcal{S}^{\otimes d}$ we have

$$
\begin{aligned}
& Q_{t_{1}, \ldots, t_{d}}\left(B_{t_{1}} \times \cdots \times B_{t_{d}}\right)=Q_{t_{1}}\left(B_{t_{1}}\right) \times Q_{t_{d}}\left(B_{t_{d}}\right) \times \cdots \times Q_{t_{d}}\left(B_{t_{d}}\right) \\
& =Q_{t_{\pi(1)}, \ldots, t_{\pi(d)}}\left(B_{t_{\pi}(1)} \times \cdots \times B_{t_{\pi(d)}}\right)=
\end{aligned}
$$

for every $d, t_{1}, \ldots, t_{d} \in T$ and π permutation of $\{1,2, \ldots, d\}$, and $B_{t_{i}} \in \mathcal{S}$.

$$
\begin{aligned}
& \quad Q_{t_{1}, \ldots, t_{d}}\left(B_{t_{1}, \ldots, t_{d}}\right)=Q_{t_{1}}\left(B_{t_{1}}\right) \times Q_{t_{d}}\left(B_{t_{d}}\right) \times \cdots \times Q_{t_{d}}\left(B_{t_{d}}\right) \times 1 \\
& \quad=Q_{t_{d}}\left(B_{t_{d}}\right) \times \cdots \times Q_{t_{d}}\left(B_{t_{d}}\right) \times Q_{t_{d+1}}(S)= \\
& \quad Q_{t_{1}, \ldots, t_{d}, t_{d+1}}\left(B_{t_{1}, \ldots, t_{d}} \times S\right) \\
& \forall d, t_{1}, \ldots, t_{d}, t_{d+1} \in T \text { and } B_{t_{1} \ldots, t_{d}} \in \mathcal{S}^{\otimes d} .
\end{aligned}
$$

Remark The next question which will be adressed in the lectures is: can we extend uniquely \mathbb{P}^{0} to a σ-additive probability defined on the σ algebra $\sigma(\mathcal{C})$ generated by the cylinders ? By Caratheordory theorem, it is enough to show that \mathbb{P}^{0} is σ-additive on the cylinder algebra, namely if $\left(C_{n}: n \in \mathbb{N}\right) \subset \mathcal{C}$ is a cylinder sequence with $C_{n} \downarrow \emptyset$, necessarily $\mathbb{P}^{0}\left(C_{n}\right) \downarrow 0$. This is the content of Kolmogorov extension theorem, which requires an additional assumption on the probability space (S, \mathcal{S}).
Q_{5} : In general, let Ω an abstract space and $\mathcal{E} \subseteq 2^{\Omega}$ a collection of Ω-subsets. Let $\mathcal{F}=\sigma(\mathcal{E})$ the σ-algebra generated by \mathcal{E}.
Show that $A \in \mathcal{F}$ if and only if $A \in \sigma(\mathcal{C})$ for some countable collection $\mathcal{C} \subseteq \mathcal{E}$, which may depend on A.
Solution : We show that the collection

$$
\mathcal{D}:=\{A \in \mathcal{F}: A \in \sigma(\mathcal{C}) \text { for some countable } \mathcal{C} \subseteq \mathcal{E}\}
$$

is both a π-class and a Dynkin class and it contains \mathcal{E}.
First if A and B are in \mathcal{D}, then $A \in \sigma(\mathcal{C})$ and $B \in \sigma\left(\mathcal{C}^{\prime}\right)$ for some countable $\mathcal{C}, \mathcal{C} \prime \subseteq \mathcal{E}$. But then both $A, B \in \sigma\left(\mathcal{C} \cup \mathcal{C}^{\prime}\right)$ where $\mathcal{C} \cup \mathcal{C}^{\prime} \subseteq \mathcal{E}$ is countable since it is the union of two countable sets, and also $A \cap B \in$ $\sigma\left(\mathcal{C} \cup \mathcal{C}^{\prime}\right)$. Therefore \mathcal{D} is a π-class.
\mathcal{D} is also Dynkin class, because:
$\Omega \in\{\Omega, \emptyset\}$ which is the trivial σ-algebra,
when $A \supseteq B$ then $A \backslash B \in \sigma\left(\mathcal{C} \cup \mathcal{C}^{\prime}\right)$.
if $\left(A_{n}: n \in \mathbb{N}\right) \in \mathcal{D}$ and $A_{n} \uparrow A$, then for every $n \in \mathbb{N} A_{n} \in \sigma\left(\mathcal{C}_{n}\right) \subseteq \mathcal{E}$, where C_{n} are countable sets, therefore $A=\bigcup_{n \in \mathbb{N}} A_{n} \in \sigma\left(C_{n}: n \in \mathbb{N}\right)$ where $\bigcup_{n \in \mathbb{N}} C_{n} \subseteq \mathcal{E}$ is countable as countable union of countable sets and $A \in \mathcal{D}$.
On the other hand $\mathcal{D} \supseteq \mathcal{E}$, since for every $E \in \mathcal{E} E \in\left\{\Omega, \emptyset, E, E^{c}\right\} \subseteq$ \mathcal{E}, and $\left\{\Omega, \emptyset, E, E^{c}\right\}$ as a finite event algebra is trivially a countably generated σ-algebra.

Therefore \mathcal{D} is a σ-algebra containing \mathcal{E} and it must contain the σ algebra $\mathcal{F}=\sigma(\mathcal{E})$ which is the smallest σ-algebra containing \mathcal{E}. Therefore $\mathcal{D}=\mathcal{F}$, and every set $A \in \mathcal{F}$ belongs to $\sigma\left(C_{n}: n \in \mathbb{N}\right)$ for some event sequence $\left(C_{n}: n \in \mathbb{N}\right) \subseteq \mathcal{E}$, but the sequence may depend on the event A. When we can use the same sequence for all events $A \in \mathcal{F}$ we say that the σ-algebra \mathcal{F} is countably generated. For example the Borel σ-algebra on \mathbb{R} is countably generated since $\mathcal{B}(\mathbb{R})=\sigma((-\infty, q]: q \in \mathbb{Q})$.
\mathbf{Q}_{6} : We come back to the construction of the σ-algebra generated by the cylinders on $\Omega=S^{T}$. Using the previous exercise, show that a set A in the σ-algebra $\sigma(\mathcal{C})$ generated by the cylinders is determined by at most countably many T-coordinates.
In particular, when $T=\mathbb{R}^{m}$ and $S=\mathbb{R}^{d}$, show that the space of continuous function

$$
C\left(\mathbb{R}^{m}, \mathbb{R}^{d}\right)=\left\{\omega: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d} \text { continuous functions }\right\} \subseteq\left(\mathbb{R}^{d}\right)^{\mathbb{R}^{m}}
$$

is not in the σ-algebra $\sigma(\mathcal{C})$ generated by the cylinders.
Solution By the previous exercise, if $A \in \mathcal{F}=\sigma(\mathcal{C})$ where \mathcal{C} is the cylinder algebra, there is a sequence of cylinders $\left(C_{n}: n \in \mathbb{N}\right) \subseteq \mathcal{C}$ (which depends on A) such that $A \in \sigma\left(C_{n}: n \in \mathbb{N}\right.$). Choose for each cylinder C_{n} in the sequence a finite dimensional representation on a finite time index set $I_{n}=\left\{t_{1}^{n}, \ldots, t_{k_{n}}^{n}\right\} \subset T$. The countable union of those finite index sets $I=\bigcup_{n \in \mathbb{N}} I_{n}$ is countable, and whether $\omega=\left(\omega_{t}\right.$: $t \in T)$ belongs to A or not is determined by the values ($\omega_{t}: t \in I$) on the countable index set $I \subset T$.
We see for example that the set of continuous functions $C\left(\mathbb{R}^{m}, \mathbb{R}^{d}\right)$, is not in the σ-algebra $\sigma(\mathcal{C})$ since continuity has to be checked at all points $t \in T=\mathbb{R}^{m}$, and it is not enough to know the values $\left(\omega_{t}: t \in I\right)$ on a countable subsets of indexes $I \subset T$.

