HU, Probability Theory Fall 2015, Problems 2 (16.9.2015)

1. A finitely additive probability \mathbb{P} on a probability space Ω equipped with a σ -algebra \mathcal{F} is also σ -additive if and only if for any event sequence $(A_n : n \in \mathbb{N}) \subseteq \mathcal{F}$ with $A_n \downarrow \emptyset$, meaning that $\forall n \in \mathbb{N} \ A_n \supseteq A_{n+1}$ and $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$, it follows that $\mathbb{P}(A_n) \downarrow 0$.

This does not hold for infinite measures with $\lambda(\Omega) = \infty$, for example for the Lebesgue measure λ on \mathbb{R} equipped with the Borel σ -algebra $\mathcal{B}(\mathbb{R})$, such that $\lambda((a,b]) = (b-a)^+$. Here $x^+ = \max\{x,0\}$ is the notation for the positive part of $x \in \mathbb{R}$.

Find a counterexample, as a sequence $(A_n : n \in \mathbb{N}) \subset \mathcal{B}(\mathbb{R})$, with $A_n \downarrow 0$ but $\lambda(A_n) \not\to 0$.

Solution Let λ be the Lebesgue measure on the measurable space (Ω, \mathcal{F}) where $\Omega = \mathbb{R}$, $\mathcal{F} = \mathcal{B}(\mathbb{R})$, and $A_n = [n, \infty)$, $n \in \mathbb{N}$.

Then
$$A_n \supseteq A_{n+1} \downarrow \bigcap_{n \in \mathbb{N}} [n, \infty) = \emptyset$$

but $\forall n \ \lambda(A_n) = +\infty$ which does not converge to zero.

2. Let $\Omega = \mathbb{R}^d$, the euclidean space. In general the Borel σ algebra is the smallest σ -algebra containing the open sets.

For $t \in \mathbb{R}^d$, we introduce the infinite rectangle

$$(-\infty, t] = \{ s \in \mathbb{R}^d : s_i \le t_i, i = 1, \dots d \}$$

Show that the class

$$\mathcal{I} = \{(-\infty, q], q \in \mathbb{Q}^d\}$$

is a π -class with $\sigma(\mathcal{I}) = \mathcal{B}(\mathbb{R}^d)$.

Hint If U is open in \mathbb{R}^d , since \mathbb{Q} is dense in \mathbb{R} , $\forall x \in U \exists r, q \in \mathbb{Q}^d$ such that r < q (meaning that $r_i < q_i$ for each coordinate $i = 1, \ldots, d$

$$x \in (r,q) := (r_1,q_1) \times (r_2,q_2) \times \cdots \times (r_d,q_d) \subseteq U.$$

i.e. there is a small open rectangle containg x which is contained in U.

Solution $(-\infty t] \cap (-\infty, s] = (-\infty, t \wedge s]$ for $t, s \in \mathbb{R}$ where $(t \wedge s)_i = t_i \wedge s_i$, $i = 1, \ldots, d$ and we denote $t_i \wedge s_i = \min\{t_i, s_i\}$. This implies that \mathcal{I} is a π -system (closed under finite intersections).

Any rectangle

$$(s,t] = \prod_{i=1}^{d} (s_i, t_i] \subseteq \mathbb{R}^d$$

has representation

(s,t] =

$$(-\infty,t]\setminus \left(\bigcup_{i=1}^{d}\left\{(-\infty,t_{1}]\times\cdots\times(-\infty,t_{i-1}]\times(-\infty,s_{i}]\times(-\infty,t_{i+1}]\times\cdots\times(-\infty,t_{i}]\right),$$

which implies that (s,t] belongs to the algebra \mathcal{A}_0 generated by the rectangles $\{(-\infty,t]:t\in\mathbb{R}^d\}$.

Note also that $(s,t) = \{x \in \mathbb{R}^d : s_i < x_i < t_i \ \forall 1 \leq i \leq d\} = \bigcup_{n \in \mathbb{N}} (s,t-1/n] \text{ where } \mathbf{1} = (1,1,\ldots,1) \in \mathbb{R}^d, \text{ therefore } (s,t) \text{ belongs to the generated } \sigma\text{-algebra } \mathcal{A} = \sigma(\mathcal{A}_0). \text{ and } (s,t) \text{ is open in } \mathbb{R}^d, \text{ which implies } \mathcal{A} \subseteq \mathcal{B}(\mathbb{R}^d) = \sigma(\{U \subset \mathbb{R}^d \text{ open set } \}).$

By using the hint, every open set is the countable union of rectangles $(r,q) \subseteq \mathcal{R}^d$ with $r \leq q$, $r,q \in \mathbb{Q}^d$, which implies that $\sigma(\{(-\infty,q]: q \in \mathbb{Q}^d\}) \supseteq \mathcal{B}(\mathbb{R}^d)$ and the equality of these σ -algebrae follows.

3. Consider a probabilty triple $(\Omega, \mathcal{F}, \mathbb{P})$, and a sequence of events $A_n \in \mathcal{F}$ such that $\mathbb{P}(A_n) = 1 \ \forall n \in \mathbb{N}$.

Show that
$$\mathbb{P}\left(\bigcap_{n\in\mathbb{N}}A_n\right)=1.$$

Consider also a sequence $B_n \in \mathcal{F}$ such that $\mathbb{P}(B_n) = 0 \ \forall n \in \mathbb{N}$.

Show that
$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}B_n\right)=0.$$

Solution For B_n with $\mathbb{P}(B_n) = 0$ Since \mathbb{P} is additive for each finite $K \in \mathbb{N}$

$$0 \le \mathbb{P}\left(\bigcup_{n=1}^{K} B_n\right) \le \sum_{n=1}^{K} \mathbb{P}(B_n) = 0$$

with equality when B_n are mutually disjoint but we do not assume that.

Since \mathbb{P} is σ -additive when we take the limit as $K\to\infty$ we can take the limit inside the probability

$$\mathbb{P}\bigg(\bigcup_{n=1}^{K} B_n\bigg) \le \sum_{n=1}^{K} \mathbb{P}(B_n)$$

$$0 \le \mathbb{P}\left(\bigcup_{n=1}^{\infty} B_n\right) = \lim_{K \to \infty} \mathbb{P}\left(\bigcup_{n=1}^{K} B_n\right) \le \lim_{K \to \infty} \sum_{n=1}^{K} \mathbb{P}(B_n) = \lim_{K \to \infty} \sum_{n=1}^{\infty} \mathbb{P}(B_n) = 0$$

If A_n is with $\mathbb{P}(A_n) = 1$, the complement has $\mathbb{P}(A_n^c) = 0$. Then by using the previous step and additivity of \mathbb{P} ,

$$\bigcap_{n\in\mathbb{N}} A_n = \left(\bigcup_{n\in\mathbb{N}} A_n^c\right)^c$$

and by using additivity

$$\mathbb{P}\left(\bigcap_{n\in\mathbb{N}}A_n\right) = 1 - \mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n^c\right) = 1 - 0$$

4. Consider the probability space (Ω, \mathcal{F}) and an event sequence $(A_n : n \in \mathbb{N}) \subseteq \mathcal{F}$. We denote

$$\lim\sup_n A_n := \bigcap_{k \in \mathbb{N}} \bigcup_{n \ge k} A_k, \quad \lim\inf_n A_n := \bigcup_{k \in \mathbb{N}} \bigcap_{n \ge k} A_k,$$

- (a) Show that $(\limsup_{n} A_n) \in \mathcal{F}$.
 - **Solution** Let $B_k = \bigcup_{n \geq k} A_k$. Since \mathcal{F} is closed under countable unions $B_k \in \mathcal{F}$, and since \mathcal{F} is closed under countable intersections we have also that $\limsup_n A_n = \left(\bigcap_{k \in \mathbb{N}} B_k\right) \in \mathcal{F}$. By taking complements and using the property from the next question we get that $\liminf_n A_n \in \mathcal{F}$ as well.
- (b) Show that $(\liminf_n A_n) = (\limsup_n A_n^c)^c$. where $B^c = \Omega \setminus B$ is the complement event.

Solution

$$\left(\limsup_n A_n^c \right)^c = \left(\bigcap_{k \in \mathbb{N}} \bigcup_{n \ge k} A_k^c \right)^c = \bigcup_{k \in \mathbb{N}} \left(\bigcup_{n \ge k} A_k^c \right)^c = \bigcup_{k \in \mathbb{N}} \bigcap_{n \ge k} \left(A_k^c \right)^c = \bigcup_{k \in \mathbb{N}} \bigcap_{n \ge k} A_k = \liminf_n A_n$$

(c) Show that $(\liminf_n A_n) \in \mathcal{F}$.

Solution By taking complements and using the properties from questions (1),(2) we get that $\liminf_n A_n \in \mathcal{F}$ as well.

(d) For $A \in \mathcal{A}$, let $\mathbf{1}_A(\omega)$, the indicator function of A defined for $\omega \in \Omega$. Show that

$$\mathbf{1}_{(\limsup_n A_n)}(\omega) = \limsup_n \mathbf{1}_{A_n}(\omega), \quad \mathbf{1}_{(\liminf_n A_n)}(\omega) = \liminf_n \mathbf{1}_{A_n}(\omega)$$

Solution Note that by definition for a sequence of functions $X_n: \Omega \to \mathbb{R}$ with $\omega \mapsto X_n(\omega)$

$$\limsup_{n} X_n(\omega) = \inf_{k \in \mathbb{N}} \sup_{n \ge k} X_n(\omega)$$

and

$$\liminf_{n} X_n(\omega) = \sup_{k \in \mathbb{N}} \inf_{n \ge k} X_n(\omega)$$

 $\mathbf{1}_{(\limsup_n A_n)}(\omega) = 1 \iff \omega \in \limsup_n A_n$

$$\iff \omega \in \bigcap_{k \in \mathbb{N}} \bigcup_{n \ge k} A_n$$

$$\iff \forall k \in \mathbb{N} \ \exists n = n(\omega, k) \ \text{with} \ \omega \in A_n$$

$$\iff \forall k \in \mathbb{N} \ \exists n = n(\omega, k) \ \text{with} \ \mathbf{1}_{A_n}(\omega) = 1$$

and since the indicators can takes only the values 0 or 1 , this is equivalent to

$$\iff \inf_{k \in \mathbb{N}} \sup_{n \ge k} \mathbf{1}_{A_n}(\omega) = 1$$

$$\iff \limsup_{n} \mathbf{1}_{A_n}(\omega) = 1$$

By taking complements and using $\mathbf{1}_{A_n^c}(\omega) = 1 - \mathbf{1}_{A_n}(\omega)$ we obtain the corresponding equivalence for the liminf.

(e) Show that

 $\limsup_{n} A_n = \{\omega : \omega \in A_n \text{ infinitely often, which means for infinitely many } n \}$

 $\lim \inf_{n} A_n = \{\omega : \omega \in A_n \text{ eventually, which means for all } n \text{ large enough } \}$

Solution $\omega \in \limsup_n A_n \iff \omega \in \bigcap_k \bigcup_{n \geq k} A_n, \iff \forall k \in \mathbb{N} \exists n = n(\omega, k) \geq k \text{ with } \omega \in A_n \iff \omega \in A_n \text{ for infinitely many } n \in \mathbb{N} \text{ (which depend on the particular } \omega\text{)}.$

 $\omega \in \liminf_n A_n \iff \omega \in \bigcup_k \bigcup_{n \geq k} A_n, \iff \exists k = k(\omega) \in \mathbb{N} \text{ such that } \forall n \geq k \ \omega \in A_n \ \forall n \geq k, \text{ which means that } \omega \in A_n \text{ eventually (for all } n \text{ which are large enough depending on } \omega).$

(f) Let $A_n \subseteq B_n \ \forall n$. Show that

$$\lim \sup_{n} A_n \subseteq \lim \sup_{n} B_n, \quad \lim \inf_{n} A_n \subseteq \lim \inf B_n$$

Solution

$$\lim \sup_{n} A_{n} = \bigcap_{k} \bigcup_{n \geq k} A_{n} \subseteq \bigcap_{k} \bigcup_{n \geq k} B_{n} = \lim \sup_{n} B_{n},$$
$$\lim \inf_{n} A_{n} = \bigcup_{k} \bigcap_{n \geq k} A_{n} \subseteq \bigcup_{k} \bigcap_{n \geq k} B_{n} = \lim \inf_{n} B_{n}.$$

(g) Suppose that for a probability \mathbb{P} we have $\mathbb{P}(\limsup_n A_n) = 1$ and $\mathbb{P}(\liminf_n B_n) = 1$. Show that $\mathbb{P}(\limsup_n A_n \cap B_n) = 1$.

Solution \mathbb{P} is additive, P(E) = P(F) = 1 implies $P(E \cap F) = 1$, therefore the event

$$D = \{ \omega : \omega \in A_n \text{ infinitely often and } \omega \in B_n \text{ eventually } \}$$

has probability $\mathbb{P}(D) = 1$. On the other hand

$$D = \{ \omega : \text{ exists a sequence } (n_k \in \mathbb{N}) \text{ such that } \omega \in A_{n_k} \ \forall k \ \} \cap$$
$$\cap \{ \omega : \text{ exist } M \text{ such that } \omega \in B_j \ \forall j \geq M \ \}$$

by taking for each $\omega \in D$ the subsequence depending on ω given by

$$(n'_k: k \in \mathbb{N}) = (n_k: k \in \mathbb{N}) \cap \{j: j \geq M\},$$
 we see that

$$D\subseteq D':=\left\{\omega: \text{ exists a sequence } (n_k'\in\mathbb{N}) \text{ such that } \omega\in A_{n_k'}\cap B_{n_{k'}} \ \forall k \ \right\}$$

which implies
$$\mathbb{P}(D') = 1$$
. But $D' = \limsup_n A_n \cap B_n$.

5. Let (Ω, \mathcal{F}) a probability space, with a sequence of probability measures $(\mathbb{P}_n : n \in \mathbb{N})$.

Suppose that $\forall A \in \mathcal{F}$ the limits

$$\mathbb{P}(A) := \lim_{n \to \infty} \mathbb{P}_n(A)$$

exists.

(a) Prove that in such case the map $\mathbb{P}: \mathcal{F} \longrightarrow [0,1]$ is a probability measure.

(b) For each event sequence $(A_k : k \in \mathbb{N}) \subseteq \mathcal{F}$ such that $A_k \downarrow \emptyset$ we have

$$\sup_{n\in\mathbb{N}} \mathbb{P}_n(A_k) \downarrow 0 \text{ as } k \uparrow \infty$$

Solution In fact this is a non-trivial result known as Hahn-Saks-Vitali Theorem.

One reference is from the book by J.L. Doob, Measure Theory Springer 1993, in paragraph III.10.

$$\mathbb{P}(\Omega) = \lim_{n \to \infty} \mathbb{P}_n(\Omega) = 1.$$

For $A, B \in \mathcal{F}$ with $A \cap B = \emptyset$

$$\mathbb{P}(A \cup B) = \lim_{n \to \infty} \mathbb{P}_n(A \cup B) = \lim_{n \to \infty} (\mathbb{P}_n(A) + \mathbb{P}_n(B))$$
$$= \lim_{n \to \infty} \mathbb{P}_n(A) + \lim_{n \to \infty} \mathbb{P}_n(B) = \mathbb{P}(A) + \mathbb{P}(B)$$

Suppose that the event sequence $(A_n : n \in \mathbb{N}) \subseteq \mathcal{F}$ is such that $A_n \downarrow \emptyset$. Then since $A_k \supseteq A_{k+1}$,

$$\mathbb{P}(A_k) = \lim_{n \to \infty} \mathbb{P}_n(A_k) \ge \lim_{n \to \infty} \mathbb{P}_n(A_{k+1}) = \mathbb{P}(A_{k+1})$$

and the sequence $(\mathbb{P}(A_k): k \in \mathbb{N}) \subset [0,1]$ is non-decreasing and it has a monotone limits $q = \lim_{k \uparrow \infty} \mathbb{P}(A_k) \in [0,1]$.

To prove σ -additivity we have to show that q = 0.

By contradiction, assume q > 0, and define index-subsequences $(n_{\ell} : \ell \in \mathbb{N})$ and $(k_{\ell} : \ell \in \mathbb{N})$ in order to contradict the hypothesis.

Let $n_1 = k_1 = 1$. By induction assume we have already defined n_j and k_j for $1 \le j \le \ell$.

Let $A = \bigcap_k A_k$. Since $A_k \ge A_{k+1} \ge A$, and for all fixed k, $\lim_n P_n(A_k) \ge \lim_n P_n(A) = q > 0$,

we can choose first an $n_{\ell+1} > n_{\ell}$ large enough such that

$$P_{n_{\ell+1}}(A_{k_{\ell}}) \ge q7/8 > 0$$

and then, since for fixed n P_n is σ -additive and $A_k \downarrow \emptyset$, we can choose $k_{\ell+1} > k_{\ell}$ large enough such that

$$P_{n_{\ell+1}}(A_{k_{\ell+1}}) \le q/8$$

Define

$$B_{\ell} = A_{k_{\ell}} \setminus A_{k_{\ell-1}}$$

then

$$P_{n_{\ell+1}}(B_{\ell}) \ge q3/4 > 0$$

For $\ell \geq 1$, j odd with $j > \ell$

$$P_{n_j}\left(\bigcup_{\text{even }s>\ell}B_s\right) \ge P_{n_j}(B_{j-1}) \ge q3/4 > 0$$

and by assumption the limit for fixed ℓ and $j \uparrow \infty$ exists and satisfies

$$P\left(\bigcup_{\text{even }s>\ell}B_s\right) \ge q3/4 > 0$$

Similarly

$$P\bigg(\bigcup_{\text{odd }r>\ell} B_r\bigg) \ge q3/4 > 0$$

Since $B_r \cap B_s = \emptyset$ for $r \neq s$,

$$A_{n_{\ell}} = \bigcup_{j \ge \ell} B_j = \left(\bigcup_{\text{even } j \ge \ell} B_j\right) \cup \left(\bigcup_{\text{odd } j > \ell} B_j\right)$$

where on the right hand side we have a disjoint union of two subsets, and P is finitely additive, it follows that $\forall \ell$

$$P(A_{n_{\ell}}) = P\left(\bigcup_{r \ge i} B_r\right) = P\left(\bigcup_{\text{even } j \ge \ell} B_j\right) + P\left(\bigcup_{\text{odd } i > \ell} B_j\right) \ge q3/2 > q > 0$$

with $n_{\ell} \to \infty$ which is contradiction with $P(A) = \lim P(A_n) = q$, unless q = 0

For the (b) part, let $(A_k : k \in \mathbb{N}) \subseteq \mathcal{F}$ be an event sequence such that such that $A_k \downarrow \emptyset$. We have already proved that P is σ -additive

$$P(A_k) = \lim_{n \to \infty} \mathbb{P}_n(A_k) = \lim \sup_{n \in \mathbb{N}} \mathbb{P}_n(A_k) \downarrow 0 \text{ as } k \uparrow \infty$$

where by assumptions $P(A_k) = \lim_{n\to\infty} P_n(A_k)$ exists. Since for a, b > 0 max $\{a, b\} \le (a + b)$,

$$\sup_{n} P_n(A_{k-1}) \ge \sup_{n} P_n(A_k) \le \sum_{m \le N} P_m(A_k) + \sup_{n \in N} P_n(A_k)$$

and for fixed N as $k \to \infty$

$$\lim_{k \to \infty} \sup_{n} P_n(A_k) \le \lim_{k \to \infty} \sum_{m < N} P_m(A_k) + \lim_{k \to \infty} \sup_{n \ge N} P_n(A_k) = \lim_{k \to \infty} \sup_{n \in N} P_n(A_k), \quad \forall n \in \mathbb{N}$$

since $P_m(A_k) \to 0$ for $1 \le k \le N$ with N fixed, therefore

$$\lim_{k \to \infty} \sup_{n} P_n(A_k) \le \lim_{N \to \infty} \lim_{k \to \infty} \sup_{n > N} P_n(A_k)$$

Now since $A_k \downarrow 0$, the doubly indexed sequence $a_k^N = \sup_{n \geq N} P_n(A_k)$ is non-increasing with respect to both k and N indexes, therefore it is possible to change the order of the limits (see Lemma 4.1.1.) in the lecture notes, and

$$\lim_{k \to \infty} \sup_{n} P_n(A_k) \le \lim_{k \to \infty} \lim_{N \to \infty} \lim_{k \to \infty} \sup_{n \ge N} P_n(A_k)$$
$$= \lim_{k \to \infty} \lim_{n} \sup_{n} P_n(A_k) = \lim_{k \to \infty} \lim_{n} P_n(A_k) = \lim_{k \to \infty} P(A_k) = 0$$

where the limit is zero since we have already proven the σ -additivity.