
HU, Probability Theory Fall 2015, Problems 2 (16.9.2015)

1. A finitely additive probability P on a probability space Ω equipped with
a σ-algebra F is also σ-additive if and only if for any event sequence
(An : n ∈ N) ⊆ F with An ↓ ∅, meaning that ∀n ∈ N An ⊇ An+1 and⋂
n∈N

An = ∅, it follows that P(An) ↓ 0.

This does not hold for infinite measures with λ(Ω) =∞, for example for
the Lebesgue measure λ on R equipped with the Borel σ-algebra B(R),
such that λ((a, b]) = (b− a)+. Here x+ = max{x, 0} is the notation for
the positive part of x ∈ R.
Find a counterexample, as a sequence (An : n ∈ N) ⊂ B(R), with
An ↓ 0 but λ(An) 6→ 0.

Solution Let λ be the Lebesgue measure on the measurable space
(Ω,F) where Ω = R, F = B(R) , and An = [n,∞), n ∈ N.
Then An ⊇ An+1 ↓

⋂
n∈N[n,∞) = ∅

but ∀n λ(An) = +∞ which does not converge to zero.

2. Let Ω = Rd, the euclidean space. In general the Borel σ algebra is the
smallest σ-algebra containing the open sets.

For t ∈ Rd, we introduce the infinite rectangle

(−∞, t] = {s ∈ Rd : si ≤ ti, i = 1, . . . d}

Show that the class

I =
{

(−∞, q], q ∈ Qd
}

is a π-class with σ(I) = B(Rd).

Hint If U is open in Rd, since Q is dense in R, ∀x ∈ U ∃r, q ∈ Qd such
that r < q (meaning that ri < qi for each coordinate i = 1, . . . , d

x ∈ (r, q) := (r1, q1)× (r2, q2)× · · · × (rd, qd) ⊆ U.

i.e. there is a small open rectangle containg x which is contained in U .

Solution (−∞t] ∩ (−∞, s] = (−∞, t ∧ s] for t, s ∈ R where (t ∧ s)i =
ti ∧ si , i = 1, . . . , d and we denote ti ∧ si = min{ti, si}. This implies
that I is a π-system (closed under finite intersections ).
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Any rectangle

(s, t] =
d∏

i=1

(si, ti] ⊆ Rd

has representation

(s, t] =

(−∞, t] \
( d⋃

i=1

{
(−∞, t1]× · · · × (−∞, ti−1]× (−∞, si]× (−∞, ti+1]× · · · × (−∞, ti]

)
,

which implies that (s, t] belongs to the algebra A0 generated by the
rectangles

{
(−∞, t] : t ∈ Rd

}
.

Note also that (s, t) = {x ∈ Rd : si < xi < ti ∀1 ≤ i ≤ d} =⋃
n∈N(s, t − 1/n] where 1 = (1, 1, . . . , 1) ∈ Rd, therefore (s, t) belongs

to the generated σ-algebra A = σ(A0). and (s, t) is open in Rd, which
implies A ⊆ B(Rd) = σ({U ⊂ Rd open set }).
By using the hint, every open set is the countable union of rectangles
(r, q) ⊆ Rd with r ≤ q, r, q ∈ Qd, which implies that σ({ (−∞, q] : q ∈
Qd}) ⊇ B(Rd) and the equality of these σ-algebrae follows.

3. Consider a probabilty triple (Ω,F ,P), and a sequence of events An ∈ F
such that P(An) = 1 ∀n ∈ N.

Show that P
(⋂

n∈NAn

)
= 1.

Consider also a sequence Bn ∈ F such that P(Bn) = 0 ∀n ∈ N.

Show that P
(⋃

n∈NBn

)
= 0.

Solution For Bn with P(Bn) = 0 Since P is additive for each finite
K ∈ N

0 ≤ P
( K⋃

n=1

Bn

)
≤

K∑
n=1

P(Bn) = 0

with equality when Bn are mutually disjoint but we do not assume
that.
Since P is σ-additive when we take the limit as K → ∞ we can take
the limit inside the probability

P
( K⋃

n=1

Bn

)
≤

K∑
n=1

P(Bn)

2



0 ≤ P
( ∞⋃

n=1

Bn

)
= lim

K→∞
P
( K⋃

n=1

Bn

)
≤ lim

K→∞

K∑
n=1

P(Bn) = lim
K→∞

∞∑
n=1

P(Bn) = 0

If An is with P(An) = 1, the complement has P(Ac
n) = 0. Then by using

the previous step and additivity of P,⋂
n∈N

An =

(⋃
n∈N

Ac
n

)c

and by using additivity

P
(⋂

n∈N

An

)
= 1− P

(⋃
n∈N

Ac
n

)
= 1− 0

4. Consider the probability space (Ω,F) and an event sequence (An : n ∈
N) ⊆ F . We denote

lim sup
n
An :=

⋂
k∈N

⋃
n≥k

Ak, lim inf
n
An :=

⋃
k∈N

⋂
n≥k

Ak,

(a) Show that (lim supnAn) ∈ F .
Solution Let Bk =

⋃
n≥k Ak. Since F is closed under countable

unions Bk ∈ F , and since F is closed under countable intersections

we have also that lim supnAn =

(⋂
k∈NBk

)
∈ F . By taking

complements and using the property from the next question we
get that lim infnAn ∈ F as well.

(b) Show that (lim infnAn) = (lim supnA
c
n)c.

where Bc = Ω \B is the complement event.
Solution(

lim sup
n
Ac

n

)c
=

(⋂
k∈N

⋃
n≥k

Ac
k

)c

=
⋃
k∈N

(⋃
n≥k

Ac
k

)c

=⋃
k∈N

⋂
n≥k

(
Ac

k

)c
=
⋃
k∈N

⋂
n≥k

Ak = lim inf
n

An

(c) Show that (lim infnAn) ∈ F .
Solution By taking complements and using the properties from
questions (1),(2) we get that lim infnAn ∈ F as well.
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(d) For A ∈ A, let 1A(ω), the indicator function of A defined for
ω ∈ Ω. Show that

1(lim supn An)(ω) = lim sup
n

1An(ω), 1(lim infn An)(ω) = lim inf
n
1An(ω)

Solution Note that by definition for a sequence of functions
Xn : Ω→ R with ω 7→ Xn(ω)

lim sup
n

Xn(ω) = inf
k∈N

sup
n≥k

Xn(ω)

and

lim inf
n

Xn(ω) = sup
k∈N

inf
n≥k

Xn(ω)

1(lim supn An)(ω) = 1 ⇐⇒ ω ∈ lim supnAn

⇐⇒ ω ∈
⋂

k∈N
⋃

n≥k An

⇐⇒ ∀k ∈ N ∃n = n(ω, k) with ω ∈ An

⇐⇒ ∀k ∈ N ∃n = n(ω, k) with 1An(ω) = 1

and since the indicators can takes only the values 0 or 1 , this is
equivalent to
⇐⇒ infk∈N supn≥k 1An(ω) = 1

⇐⇒ lim supn 1An(ω) = 1

By taking complements and using 1Ac
n
(ω) = 1−1An(ω) we obtain

the corresponding equivalence for the liminf.

(e) Show that

lim sup
n
An = {ω : ω ∈ An infinitely often, which means for infinitely many n }

lim inf
n
An = {ω : ω ∈ An eventually, which means for all n large enough }

Solution ω ∈ lim supnAn ⇐⇒ ω ∈
⋂

k

⋃
n≥k An, ⇐⇒ ∀k ∈

N∃n = n(ω, k) ≥ k with ω ∈ An ⇐⇒ ω ∈ An for infinitely many
n ∈ N (which depend on the particular ω).
ω ∈ lim infnAn ⇐⇒ ω ∈

⋃
k

⋃
n≥k An, ⇐⇒ ∃k = k(ω) ∈ N such

that ∀n ≥ k ω ∈ An ∀n ≥ k, which means that ω ∈ An eventually
(for all n which are large enough depending on ω).
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(f) Let An ⊆ Bn ∀n. Show that

lim sup
n
An ⊆ lim sup

n
Bn, lim inf

n
An ⊆ lim inf Bn

Solution

lim sup
n
An =

⋂
k

⋃
n≥k

An ⊆
⋂
k

⋃
n≥k

Bn = lim sup
n
Bn,

lim inf
n
An =

⋃
k

⋂
n≥k

An ⊆
⋃
k

⋂
n≥k

Bn = lim inf
n
Bn.

(g) Suppose that for a probability P we have P(lim supnAn) = 1 and
P(lim infnBn) = 1. Show that P(lim supnAn ∩Bn) = 1.
Solution P is additive, P (E) = P (F ) = 1 implies P (E∩F ) = 1,
therefore the event

D =
{
ω : ω ∈ An infinitely often and ω ∈ Bn eventually

}
has probability P(D) = 1. On the other hand

D =
{
ω : exists a sequence (nk ∈ N) such that ω ∈ Ank

∀k
}
∩

∩
{
ω : exist M such that ω ∈ Bj ∀j ≥M

}
by taking for each ω ∈ D the subsequence depending on ω given
by
(n′k : k ∈ N) = (nk : k ∈ N) ∩ {j : j ≥M}, we see that

D ⊆ D′ :=
{
ω : exists a sequence (n′k ∈ N) such that ω ∈ An′k

∩Bnk′ ∀k
}

which implies P(D′) = 1. But D′ = lim supnAn ∩Bn.

5. Let (Ω,F) a probability space, with a sequence of probability measures
(Pn : n ∈ N).

Suppose that ∀A ∈ F the limits

P(A) := lim
n→∞

Pn(A)

exists.

(a) Prove that in such case the map P : F −→ [0, 1] is a probability
measure.
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(b) For each event sequence (Ak : k ∈ N) ⊆ F such that Ak ↓ ∅ we
have

sup
n∈N

Pn(Ak) ↓ 0 as k ↑ ∞

Solution In fact this is a non-trivial result known as Hahn-Saks-Vitali
Theorem.

One reference is from the book by J.L. Doob, Measure Theory Springer
1993, in paragraph III.10.

P(Ω) = limn→∞ Pn(Ω) = 1.

For A,B ∈ F with A ∩B = ∅

P(A ∪B) = lim
n→∞

Pn(A ∪B) = lim
n→∞

(
Pn(A) + Pn(B)

)
= lim

n→∞
Pn(A) + lim

n→∞
Pn(B) = P(A) + P(B)

Suppose that the event sequence (An : n ∈ N) ⊆ F is such that An ↓ ∅.
Then since Ak ⊇ Ak+1,

P(Ak) = lim
n→∞

Pn(Ak) ≥ lim
n→∞

Pn(Ak+1) = P(Ak+1)

and the sequence (P(Ak) : k ∈ N) ⊂ [0, 1] is non-decreasing and it has
a monotone limits q = limk↑∞ P(Ak) ∈ [0, 1].

To prove σ-additivity we have to show that q = 0.

By contradiction, assume q > 0, and define index-subsequences (n` :
` ∈ N) and (k` : ` ∈ N) in order to contradict the hypothesis.

Let n1 = k1 = 1. By induction assume we have already defined nj and
kj for 1 ≤ j ≤ `.

LetA =
⋂

k Ak. SinceAk ≥ Ak+1 ≥ A , and for all fixed k, limn Pn(Ak) ≥
limn Pn(A) = q > 0,

we can choose first an n`+1 > n` large enough such that

Pn`+1
(Ak`) ≥ q7/8 > 0

and then, since for fixed n Pn is σ-additive and Ak ↓ ∅, we can choose
k`+1 > k` large enough such that

Pn`+1
(Ak`+1

) ≤ q/8
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Define

B` = Ak` \ Ak`−1

then

Pn`+1
(B`) ≥ q3/4 > 0

For ` ≥ 1, j odd with j > `

Pnj

( ⋃
even s≥`

Bs

)
≥ Pnj

(Bj−1) ≥ q3/4 > 0

and by assumption the limit for fixed ` and j ↑ ∞ exists and satisfies

P

( ⋃
even s≥`

Bs

)
≥ q3/4 > 0

Similarly

P

( ⋃
odd r≥`

Br

)
≥ q3/4 > 0

Since Br ∩Bs = ∅ for r 6= s,

An`
=
⋃
j≥`

Bj =

( ⋃
even j≥`

Bj

)
∪
( ⋃

odd j≥`

Bj

)

where on the right hand side we have a disjoint union of two subsets,
and P is finitely additive, it follows that ∀`

P (An`
) = P

(⋃
r≥i

Br

)
= P

( ⋃
even j≥`

Bj

)
+ P

( ⋃
odd j≥`

Bj

)
≥ q3/2 > q > 0

with n` → ∞ which is contradiction with P (A) = limP (An) = q, un-
less q = 0 2

For the (b) part, let (Ak : k ∈ N) ⊆ F be an event sequence such that
such that Ak ↓ ∅ . We have already proved that P is σ-additive

P (Ak) = lim
n→∞

Pn(Ak) = lim sup
n∈N

Pn(Ak) ↓ 0 as k ↑ ∞
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where by assumptions P (Ak) = limn→∞ Pn(Ak) exists. Since for a, b > 0
max{ a, b} ≤ (a+ b),

sup
n
Pn(Ak−1) ≥ sup

n
Pn(Ak) ≤

∑
m≤N

Pm(Ak) + sup
n∈N

Pn(Ak)

and for fixed N as k →∞

lim
k→∞

sup
n
Pn(Ak) ≤ lim

k→∞

∑
m≤N

Pm(Ak) + lim
k→∞

sup
n≥N

Pn(Ak) = lim
k→∞

sup
n∈N

Pn(Ak), ∀n ∈ N

since Pm(Ak)→ 0 for 1 ≤ k ≤ N with N fixed. therefore

lim
k→∞

sup
n
Pn(Ak) ≤ lim

N→∞
lim
k→∞

sup
n≥N

Pn(Ak)

Now since Ak ↓ 0, the doubly indexed sequence aNk = supn≥N Pn(Ak)
is non-increasing with respect to both k and N indexes, therefore it
is possible to change the order of the limits (see Lemma 4.1.1.) in the
lecture notes, and

lim
k→∞

sup
n
Pn(Ak) ≤ lim

k→∞
lim

N→∞
lim
k→∞

sup
n≥N

Pn(Ak)

= lim
k→∞

lim sup
n
Pn(Ak) = lim

k→∞
lim
n
Pn(Ak) = lim

k→∞
P (Ak) = 0

where the limit is zero since we have already proven the σ-additivity.
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