HU, Probability Theory Fall 2015, Problems 2 (16.9.2015)

1. A finitely additive probability \mathbb{P} on a probability space Ω equipped with a σ-algebra \mathcal{F} is also σ-additive if and only if for any event sequence $\left(A_{n}: n \in \mathbb{N}\right) \subseteq \mathcal{F}$ with $A_{n} \downarrow \emptyset$, meaning that $\forall n \in \mathbb{N} A_{n} \supseteq A_{n+1}$ and $\bigcap_{n \in \mathbb{N}} A_{n}=\emptyset$, it follows that $\mathbb{P}\left(A_{n}\right) \downarrow 0$.
This does not hold for infinite measures with $\lambda(\Omega)=\infty$, for example for the Lebesgue measure λ on \mathbb{R} equipped with the Borel σ-algebra $\mathcal{B}(\mathbb{R})$, such that $\lambda((a, b])=(b-a)^{+}$. Here $x^{+}=\max \{x, 0\}$ is the notation for the positive part of $x \in \mathbb{R}$.
Find a counterexample, as a sequence $\left(A_{n}: n \in \mathbb{N}\right) \subset \mathcal{B}(\mathbb{R})$, with $A_{n} \downarrow 0$ but $\lambda\left(A_{n}\right) \nrightarrow 0$.
Solution Let λ be the Lebesgue measure on the measurable space (Ω, \mathcal{F}) where $\Omega=\mathbb{R}, \mathcal{F}=\mathcal{B}(\mathbb{R})$, and $A_{n}=[n, \infty), \quad n \in \mathbb{N}$.
Then $A_{n} \supseteq A_{n+1} \downarrow \bigcap_{n \in \mathbb{N}}[n, \infty)=\emptyset$
but $\forall n \lambda\left(A_{n}\right)=+\infty$ which does not converge to zero.
2. Let $\Omega=\mathbb{R}^{d}$, the euclidean space. In general the Borel σ algebra is the smallest σ-algebra containing the open sets.
For $t \in \mathbb{R}^{d}$, we introduce the infinite rectangle

$$
(-\infty, t]=\left\{s \in \mathbb{R}^{d}: s_{i} \leq t_{i}, i=1, \ldots d\right\}
$$

Show that the class

$$
\mathcal{I}=\left\{(-\infty, q], q \in \mathbb{Q}^{d}\right\}
$$

is a π-class with $\sigma(\mathcal{I})=\mathcal{B}\left(\mathbb{R}^{d}\right)$.
Hint If U is open in \mathbb{R}^{d}, since \mathbb{Q} is dense in $\mathbb{R}, \forall x \in U \exists r, q \in \mathbb{Q}^{d}$ such that $r<q$ (meaning that $r_{i}<q_{i}$ for each coordinate $i=1, \ldots, d$

$$
x \in(r, q):=\left(r_{1}, q_{1}\right) \times\left(r_{2}, q_{2}\right) \times \cdots \times\left(r_{d}, q_{d}\right) \subseteq U .
$$

i.e. there is a small open rectangle containg x which is contained in U.

Solution $(-\infty t] \cap(-\infty, s]=(-\infty, t \wedge s]$ for $t, s \in \mathbb{R}$ where $(t \wedge s)_{i}=$ $t_{i} \wedge s_{i}, i=1, \ldots, d$ and we denote $t_{i} \wedge s_{i}=\min \left\{t_{i}, s_{i}\right\}$. This implies that \mathcal{I} is a π-system (closed under finite intersections).

Any rectangle

$$
(s, t]=\prod_{i=1}^{d}\left(s_{i}, t_{i}\right] \subseteq \mathbb{R}^{d}
$$

has representation

$$
\begin{aligned}
& (s, t]= \\
& (-\infty, t] \backslash\left(\bigcup_{i=1}^{d}\left\{\left(-\infty, t_{1}\right] \times \cdots \times\left(-\infty, t_{i-1}\right] \times\left(-\infty, s_{i}\right] \times\left(-\infty, t_{i+1}\right] \times \cdots \times\left(-\infty, t_{i}\right]\right),\right.
\end{aligned}
$$

which implies that $(s, t]$ belongs to the algebra \mathcal{A}_{0} generated by the rectangles $\left\{(-\infty, t]: t \in \mathbb{R}^{d}\right\}$.
Note also that $(s, t)=\left\{x \in \mathbb{R}^{d}: s_{i}<x_{i}<t_{i} \forall 1 \leq i \leq d\right\}=$ $\bigcup_{n \in \mathbb{N}}(s, t-\mathbf{1} / n]$ where $\mathbf{1}=(1,1, \ldots, 1) \in \mathbb{R}^{d}$, therefore (s, t) belongs to the generated σ-algebra $\mathcal{A}=\sigma\left(\mathcal{A}_{0}\right)$. and (s, t) is open in \mathbb{R}^{d}, which implies $\mathcal{A} \subseteq \mathcal{B}\left(\mathbb{R}^{d}\right)=\sigma\left(\left\{U \subset \mathbb{R}^{d}\right.\right.$ open set $\left.\}\right)$.
By using the hint, every open set is the countable union of rectangles $(r, q) \subseteq \mathcal{R}^{d}$ with $r \leq q, r, q \in \mathbb{Q}^{d}$, which implies that $\sigma(\{(-\infty, q]: q \in$ $\left.\left.\mathbb{Q}^{d}\right\}\right) \supseteq \mathcal{B}\left(\mathbb{R}^{d}\right)$ and the equality of these σ-algebrae follows.
3. Consider a probabilty triple $(\Omega, \mathcal{F}, \mathbb{P})$, and a sequence of events $A_{n} \in \mathcal{F}$ such that $\mathbb{P}\left(A_{n}\right)=1 \forall n \in \mathbb{N}$.
Show that $\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)=1$.
Consider also a sequence $B_{n} \in \mathcal{F}$ such that $\mathbb{P}\left(B_{n}\right)=0 \forall n \in \mathbb{N}$.
Show that $\mathbb{P}\left(\bigcup_{n \in \mathbb{N}} B_{n}\right)=0$.
Solution For B_{n} with $\mathbb{P}\left(B_{n}\right)=0$ Since \mathbb{P} is additive for each finite $K \in \mathbb{N}$

$$
0 \leq \mathbb{P}\left(\bigcup_{n=1}^{K} B_{n}\right) \leq \sum_{n=1}^{K} \mathbb{P}\left(B_{n}\right)=0
$$

with equality when B_{n} are mutually disjoint but we do not assume that.
Since \mathbb{P} is σ-additive when we take the limit as $K \rightarrow \infty$ we can take the limit inside the probability

$$
\mathbb{P}\left(\bigcup_{n=1}^{K} B_{n}\right) \leq \sum_{n=1}^{K} \mathbb{P}\left(B_{n}\right)
$$

$$
0 \leq \mathbb{P}\left(\bigcup_{n=1}^{\infty} B_{n}\right)=\lim _{K \rightarrow \infty} \mathbb{P}\left(\bigcup_{n=1}^{K} B_{n}\right) \leq \lim _{K \rightarrow \infty} \sum_{n=1}^{K} \mathbb{P}\left(B_{n}\right)=\lim _{K \rightarrow \infty} \sum_{n=1}^{\infty} \mathbb{P}\left(B_{n}\right)=0
$$

If A_{n} is with $\mathbb{P}\left(A_{n}\right)=1$, the complement has $\mathbb{P}\left(A_{n}^{c}\right)=0$. Then by using the previous step and additivity of \mathbb{P},

$$
\bigcap_{n \in \mathbb{N}} A_{n}=\left(\bigcup_{n \in \mathbb{N}} A_{n}^{c}\right)^{c}
$$

and by using additivity

$$
\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)=1-\mathbb{P}\left(\bigcup_{n \in \mathbb{N}} A_{n}^{c}\right)=1-0
$$

4. Consider the probability space (Ω, \mathcal{F}) and an event sequence $\left(A_{n}: n \in\right.$ $\mathbb{N}) \subseteq \mathcal{F}$. We denote

$$
\lim \sup _{n} A_{n}:=\bigcap_{k \in \mathbb{N}} \bigcup_{n \geq k} A_{k}, \quad \lim \inf _{n} A_{n}:=\bigcup_{k \in \mathbb{N}} \bigcap_{n \geq k} A_{k},
$$

(a) Show that $\left(\lim \sup _{n} A_{n}\right) \in \mathcal{F}$.

Solution Let $B_{k}=\bigcup_{n \geq k} A_{k}$. Since \mathcal{F} is closed under countable unions $B_{k} \in \mathcal{F}$, and since \mathcal{F} is closed under countable intersections we have also that $\limsup _{n} A_{n}=\left(\bigcap_{k \in \mathbb{N}} B_{k}\right) \in \mathcal{F}$. By taking complements and using the property from the next question we get that $\liminf _{n} A_{n} \in \mathcal{F}$ as well.
(b) Show that $\left(\liminf _{n} A_{n}\right)=\left(\limsup _{n} A_{n}^{c}\right)^{c}$. where $B^{c}=\Omega \backslash B$ is the complement event.

Solution

$$
\begin{aligned}
& \left(\limsup A_{n}^{c}\right)^{c}=\left(\bigcap_{k \in \mathbb{N}} \bigcup_{n \geq k} A_{k}^{c}\right)^{c}=\bigcup_{k \in \mathbb{N}}\left(\bigcup_{n \geq k} A_{k}^{c}\right)^{c}= \\
& \bigcup_{k \in \mathbb{N}} \bigcap_{n \geq k}\left(A_{k}^{c}\right)^{c}=\bigcup_{k \in \mathbb{N}} \bigcap_{n \geq k} A_{k}=\liminf _{n} A_{n}
\end{aligned}
$$

(c) Show that $\left(\liminf _{n} A_{n}\right) \in \mathcal{F}$.

Solution By taking complements and using the properties from questions (1),(2) we get that $\liminf _{n} A_{n} \in \mathcal{F}$ as well.
(d) For $A \in \mathcal{A}$, let $\mathbf{1}_{A}(\omega)$, the indicator function of A defined for $\omega \in \Omega$. Show that
$\mathbf{1}_{(\operatorname{lim~sup}}^{n}$ An $)(\omega)=\lim \sup _{n} \mathbf{1}_{A_{n}}(\omega), \quad \mathbf{1}_{\left(\liminf _{n} A_{n}\right)}(\omega)=\liminf \mathbf{1}_{n} \mathbf{1}_{A_{n}}(\omega)$
Solution Note that by definition for a sequence of functions $X_{n}: \Omega \rightarrow \mathbb{R}$ with $\omega \mapsto X_{n}(\omega)$

$$
\limsup _{n} X_{n}(\omega)=\inf _{k \in \mathbb{N}} \sup _{n \geq k} X_{n}(\omega)
$$

and

$$
\liminf _{n} X_{n}(\omega)=\sup _{k \in \mathbb{N}} \inf _{n \geq k} X_{n}(\omega)
$$

$\left.\mathbf{1}_{(\operatorname{lim~sup}}^{n} A_{n}\right)(\omega)=1 \Longleftrightarrow \omega \in \limsup \sup _{n} A_{n}$
$\Longleftrightarrow \omega \in \bigcap_{k \in \mathbb{N}} \bigcup_{n \geq k} A_{n}$
$\Longleftrightarrow \forall k \in \mathbb{N} \exists n=n(\omega, k)$ with $\omega \in A_{n}$
$\Longleftrightarrow \forall k \in \mathbb{N} \exists n=n(\omega, k)$ with $\mathbf{1}_{A_{n}}(\omega)=1$
and since the indicators can takes only the values 0 or 1 , this is equivalent to
$\Longleftrightarrow \inf _{k \in \mathbb{N}} \sup _{n \geq k} \mathbf{1}_{A_{n}}(\omega)=1$
$\Longleftrightarrow \lim \sup _{n} \mathbf{1}_{A_{n}}(\omega)=1$
By taking complements and using $\mathbf{1}_{A_{n}^{c}}(\omega)=1-\mathbf{1}_{A_{n}}(\omega)$ we obtain the corresponding equivalence for the liminf.
(e) Show that
$\lim \sup _{n} A_{n}=\left\{\omega: \omega \in A_{n}\right.$ infinitely often, which means for infinitely many $\left.n\right\}$
$\liminf _{n} A_{n}=\left\{\omega: \omega \in A_{n}\right.$ eventually, which means for all n large enough $\}$
Solution $\omega \in \limsup _{n} A_{n} \Longleftrightarrow \omega \in \bigcap_{k} \bigcup_{n \geq k} A_{n}, \Longleftrightarrow \forall k \in$ $\mathbb{N} \exists n=n(\omega, k) \geq k$ with $\omega \in A_{n} \Longleftrightarrow \omega \in A_{n}$ for infinitely many $n \in \mathbb{N}$ (which depend on the particular ω).
$\omega \in \lim \inf _{n} A_{n} \Longleftrightarrow \omega \in \bigcup_{k} \bigcup_{n \geq k} A_{n} \Longleftrightarrow \exists k=k(\omega) \in \mathbb{N}$ such that $\forall n \geq k \omega \in A_{n} \forall n \geq k$, which means that $\omega \in A_{n}$ eventually (for all n which are large enough depending on ω).
(f) Let $A_{n} \subseteq B_{n} \forall n$. Show that

$$
\lim \sup _{n} A_{n} \subseteq \lim \sup _{n} B_{n}, \quad \lim \inf _{n} A_{n} \subseteq \liminf B_{n}
$$

Solution

$$
\begin{aligned}
& \limsup _{n} A_{n}=\bigcap_{k} \bigcup_{n \geq k} A_{n} \subseteq \bigcap_{k} \bigcup_{n \geq k} B_{n}=\lim \sup _{n} B_{n}, \\
& \lim \inf _{n} A_{n}=\bigcup_{k} \bigcap_{n \geq k} A_{n} \subseteq \bigcup_{k} \bigcap_{n \geq k} B_{n}=\lim \inf _{n} B_{n} .
\end{aligned}
$$

(g) Suppose that for a probability \mathbb{P} we have $\mathbb{P}\left(\lim \sup _{n} A_{n}\right)=1$ and $\mathbb{P}\left(\liminf _{n} B_{n}\right)=1$. Show that $\mathbb{P}\left(\limsup _{n} A_{n} \cap B_{n}\right)=1$.
Solution \mathbb{P} is additive, $P(E)=P(F)=1$ implies $P(E \cap F)=1$, therefore the event

$$
D=\left\{\omega: \omega \in A_{n} \text { infinitely often and } \omega \in B_{n} \text { eventually }\right\}
$$

has probability $\mathbb{P}(D)=1$. On the other hand
$D=\left\{\omega\right.$: exists a sequence $\left(n_{k} \in \mathbb{N}\right)$ such that $\left.\omega \in A_{n_{k}} \forall k\right\} \cap$ $\cap\left\{\omega\right.$: exist M such that $\left.\omega \in B_{j} \forall j \geq M\right\}$
by taking for each $\omega \in D$ the subsequence depending on ω given by
$\left(n_{k}^{\prime}: k \in \mathbb{N}\right)=\left(n_{k}: k \in \mathbb{N}\right) \cap\{j: j \geq M\}$, we see that
$D \subseteq D^{\prime}:=\left\{\omega\right.$: exists a sequence $\left(n_{k}^{\prime} \in \mathbb{N}\right)$ such that $\left.\omega \in A_{n_{k}^{\prime}} \cap B_{n_{k^{\prime}}} \forall k\right\}$
which implies $\mathbb{P}\left(D^{\prime}\right)=1$. But $D^{\prime}=\lim \sup _{n} A_{n} \cap B_{n}$.
5 . Let (Ω, \mathcal{F}) a probability space, with a sequence of probability measures $\left(\mathbb{P}_{n}: n \in \mathbb{N}\right)$.
Suppose that $\forall A \in \mathcal{F}$ the limits

$$
\mathbb{P}(A):=\lim _{n \rightarrow \infty} \mathbb{P}_{n}(A)
$$

exists.
(a) Prove that in such case the map $\mathbb{P}: \mathcal{F} \longrightarrow[0,1]$ is a probability measure.
(b) For each event sequence $\left(A_{k}: k \in \mathbb{N}\right) \subseteq \mathcal{F}$ such that $A_{k} \downarrow \emptyset$ we have

$$
\sup _{n \in \mathbb{N}} \mathbb{P}_{n}\left(A_{k}\right) \downarrow 0 \text { as } k \uparrow \infty
$$

Solution In fact this is a non-trivial result known as Hahn-Saks-Vitali Theorem.

One reference is from the book by J.L. Doob, Measure Theory Springer 1993, in paragraph III. 10.
$\mathbb{P}(\Omega)=\lim _{n \rightarrow \infty} \mathbb{P}_{n}(\Omega)=1$.
For $A, B \in \mathcal{F}$ with $A \cap B=\emptyset$

$$
\begin{aligned}
& \mathbb{P}(A \cup B)=\lim _{n \rightarrow \infty} \mathbb{P}_{n}(A \cup B)=\lim _{n \rightarrow \infty}\left(\mathbb{P}_{n}(A)+\mathbb{P}_{n}(B)\right) \\
& =\lim _{n \rightarrow \infty} \mathbb{P}_{n}(A)+\lim _{n \rightarrow \infty} \mathbb{P}_{n}(B)=\mathbb{P}(A)+\mathbb{P}(B)
\end{aligned}
$$

Suppose that the event sequence $\left(A_{n}: n \in \mathbb{N}\right) \subseteq \mathcal{F}$ is such that $A_{n} \downarrow \emptyset$.
Then since $A_{k} \supseteq A_{k+1}$,

$$
\mathbb{P}\left(A_{k}\right)=\lim _{n \rightarrow \infty} \mathbb{P}_{n}\left(A_{k}\right) \geq \lim _{n \rightarrow \infty} \mathbb{P}_{n}\left(A_{k+1}\right)=\mathbb{P}\left(A_{k+1}\right)
$$

and the sequence $\left(\mathbb{P}\left(A_{k}\right): k \in \mathbb{N}\right) \subset[0,1]$ is non-decreasing and it has a monotone limits $q=\lim _{k \uparrow \infty} \mathbb{P}\left(A_{k}\right) \in[0,1]$.
To prove σ-additivity we have to show that $q=0$.
By contradiction, assume $q>0$, and define index-subsequences (n_{ℓ} : $\ell \in \mathbb{N})$ and $\left(k_{\ell}: \ell \in \mathbb{N}\right)$ in order to contradict the hypothesis.

Let $n_{1}=k_{1}=1$. By induction assume we have already defined n_{j} and k_{j} for $1 \leq j \leq \ell$.
Let $A=\bigcap_{k} A_{k}$. Since $A_{k} \geq A_{k+1} \geq A$, and for all fixed $k, \lim _{n} P_{n}\left(A_{k}\right) \geq$ $\lim _{n} P_{n}(A)=q>0$,
we can choose first an $n_{\ell+1}>n_{\ell}$ large enough such that

$$
P_{n_{\ell+1}}\left(A_{k_{\ell}}\right) \geq q 7 / 8>0
$$

and then, since for fixed $n P_{n}$ is σ-additive and $A_{k} \downarrow \emptyset$, we can choose $k_{\ell+1}>k_{\ell}$ large enough such that

$$
P_{n_{\ell+1}}\left(A_{k_{\ell+1}}\right) \leq q / 8
$$

Define

$$
B_{\ell}=A_{k_{\ell}} \backslash A_{k_{\ell-1}}
$$

then

$$
P_{n_{\ell+1}}\left(B_{\ell}\right) \geq q 3 / 4>0
$$

For $\ell \geq 1, j$ odd with $j>\ell$

$$
P_{n_{j}}\left(\bigcup_{\text {even } s \geq \ell} B_{s}\right) \geq P_{n_{j}}\left(B_{j-1}\right) \geq q 3 / 4>0
$$

and by assumption the limit for fixed ℓ and $j \uparrow \infty$ exists and satisfies

$$
P\left(\bigcup_{\text {even } s \geq \ell} B_{s}\right) \geq q 3 / 4>0
$$

Similarly

$$
P\left(\bigcup_{\text {odd } r \geq \ell} B_{r}\right) \geq q 3 / 4>0
$$

Since $B_{r} \cap B_{s}=\emptyset$ for $r \neq s$,

$$
A_{n_{\ell}}=\bigcup_{j \geq \ell} B_{j}=\left(\bigcup_{\text {even }}^{j \geq \ell} B_{j}\right) \cup\left(\bigcup_{\text {odd } j \geq \ell} B_{j}\right)
$$

where on the right hand side we have a disjoint union of two subsets, and P is finitely additive, it follows that $\forall \ell$
$P\left(A_{n_{\ell}}\right)=P\left(\bigcup_{r \geq i} B_{r}\right)=P\left(\bigcup_{\text {even }}^{j \geq \ell} B_{j}\right)+P\left(\bigcup_{\text {odd } j \geq \ell} B_{j}\right) \geq q 3 / 2>q>0$
with $n_{\ell} \rightarrow \infty$ which is contradiction with $P(A)=\lim P\left(A_{n}\right)=q$, unless $q=0$

For the (b) part, let $\left(A_{k}: k \in \mathbb{N}\right) \subseteq \mathcal{F}$ be an event sequence such that such that $A_{k} \downarrow \emptyset$. We have already proved that P is σ-additive

$$
P\left(A_{k}\right)=\lim _{n \rightarrow \infty} \mathbb{P}_{n}\left(A_{k}\right)=\lim \sup _{n \in \mathbb{N}} \mathbb{P}_{n}\left(A_{k}\right) \downarrow 0 \text { as } k \uparrow \infty
$$

where by assumptions $P\left(A_{k}\right)=\lim _{n \rightarrow \infty} P_{n}\left(A_{k}\right)$ exists. Since for $a, b>0$ $\max \{a, b\} \leq(a+b)$,

$$
\sup _{n} P_{n}\left(A_{k-1}\right) \geq \sup _{n} P_{n}\left(A_{k}\right) \leq \sum_{m \leq N} P_{m}\left(A_{k}\right)+\sup _{n \in N} P_{n}\left(A_{k}\right)
$$

and for fixed N as $k \rightarrow \infty$
$\lim _{k \rightarrow \infty} \sup _{n} P_{n}\left(A_{k}\right) \leq \lim _{k \rightarrow \infty} \sum_{m \leq N} P_{m}\left(A_{k}\right)+\lim _{k \rightarrow \infty} \sup _{n \geq N} P_{n}\left(A_{k}\right)=\lim _{k \rightarrow \infty} \sup _{n \in N} P_{n}\left(A_{k}\right), \quad \forall n \in \mathbb{N}$
since $P_{m}\left(A_{k}\right) \rightarrow 0$ for $1 \leq k \leq N$ with N fixed. therefore

$$
\lim _{k \rightarrow \infty} \sup _{n} P_{n}\left(A_{k}\right) \leq \lim _{N \rightarrow \infty} \lim _{k \rightarrow \infty} \sup _{n \geq N} P_{n}\left(A_{k}\right)
$$

Now since $A_{k} \downarrow 0$, the doubly indexed sequence $a_{k}^{N}=\sup _{n \geq N} P_{n}\left(A_{k}\right)$ is non-increasing with respect to both k and N indexes, therefore it is possible to change the order of the limits (see Lemma 4.1.1.) in the lecture notes, and

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \sup _{n} P_{n}\left(A_{k}\right) \leq \lim _{k \rightarrow \infty} \lim _{N \rightarrow \infty} \lim _{k \rightarrow \infty} \sup _{n \geq N} P_{n}\left(A_{k}\right) \\
& =\lim _{k \rightarrow \infty} \lim \sup _{n} P_{n}\left(A_{k}\right)=\lim _{k \rightarrow \infty} \lim _{n} P_{n}\left(A_{k}\right)=\lim _{k \rightarrow \infty} P\left(A_{k}\right)=0
\end{aligned}
$$

where the limit is zero since we have already proven the σ-additivity.

