
HU, Probability Theory Fall 2015, Problems 1 (9.9.2015)

1. Let Ω = [0, 1] ∩Q = {r rational : 0 ≤ r ≤ 1 },
and A the collection of sets which can be represented as finite unions
of intervals of type (a, b] ∩ Q, [a, b] ∩ Q ,(a, b) ∩ Q, or [a, b) ∩ Q, with
0 ≤ a ≤ b ≤ 1.

Define ∀0 ≤ a ≤ b ≤ 1

P0((a, b] ∩Q) = P0([a, b] ∩Q) = P0((a, b) ∩Q) = P0([a, b) ∩Q) = b− a,

• Show A is an algebra, which means Ω ∈ A, and when A ∈ A also
Ac := (Ω \ A) ∈ A and if A,B ∈ A also A ∪B ∈ A.

• Extend the function P0 to a finitely additive probability on the
algebra A.

• Show that such additive P0 is not σ-additive.

Hint Ω = [0, 1] ∩Q is countable !.

Solution. If A,B ⊆ [0, 1] are finite union of intervals (which could be
either open or closed on each side), also the complementa Ac = [0, 1]\A,
Bc = [0, 1] \ B in Ω = [0, 1] are finite union of intervals, and the
intersection A∩B is a finite union of intervals. Since A∪B = (Ac∩Bc)c,
the same follows for finite union of intervals.

The same properties hold after taking intersection withg the rationals
Q, which means that A is an algebra.

Assume that A ∈ A has representation

A =
n⋃
i=1

〈ai, bi〉 ∩Q (0.1)

where 0 ≤ a1 ≤ b1 ≤ · · · ≤ an ≤ bn ≤ 1,

and we use the same notation “〈” for both open and closed parenthesis
“(”, “ [”,

and the same notation ”〉” for both “]”, ”)“.

Note that such representation is not unique, for example [a, c] = [a, b)∪
[b, c] = [a, b] ∪ [b, c] = [a, b] ∪ (b, c].

For A with is represented by disjoint rational intervals as in (0.1)

P0(A) =
n∑
i=1

(bi − ai)
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P0 is finitely additive but it cannot be countably additive since

Ω =
⋃

q∈Q∩[0,1]

{ q},

with P0({q}) = q − q = 0, while P0(Ω) = P0([0, 1]) = 1− 0 = 1, which
is contradiction with σ-additivity since

1 = P0(Ω) 6=
∑

q∈[0,1]∩Q

P0({q}) 2

2. Consider an abstract set Ω, and define the collection

A =
{
A ⊆ Ω : either A or its complement Ac = Ω \ A is finite

}
• Show that when #Ω =∞A is an algebra but it is not a σ-algebra.

• For A ∈ A, define Q(A) = 0 when A is finite and Q(A) = 1
when A is infinite. Show that Q is finitely additive on A but not
σ-additive.

Solution: Note that if A1, A2 ∈ A are infinite sets with finite comple-
ment, such that Q(A1) = Q(A2) = 1, necessarily A ∩ B 6= ∅, because
otherwise by taking complements we would get

Ω = Ac ∪Bc

as union of finite sets is finite, which is contraddiction with the assump-
tion #Ω =∞.

Now if A1 and A2 are finite, A1 ∪ A2 is finite and finite additivity is
satisfied for

Q(A1 ∪ A2) = 0 = 0 + 0 = Q(A1) +Q(A2)

If A1 is finite and Ac2 is finite, then A1∪A2 is infinite with complement
Ac1 ∩ Ac2 ⊆ Ac1 which is finite, and finite additivity is satisfied for

Q(A1 ∪ A2) = 1 = 1 + 0 = Q(A1) +Q(A2)

If Ac1 and Ac2 are finite, then A1 ∩ A2 6= ∅. In this case

Q(A1 ∪ A2) = 1 < (1 + 1) = Q(A1) +Q(A2),

but this does not contradict finite additivity since A1 and A2 are not
disjoint.
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3. Let Ω an abstract set and 2Ω its power, which is the collection of subsets
A ⊆ Ω.

Define the symmetric difference of A,B ⊆ Ω as

A∆B = (A ∪B) \ (A ∩B) = {ω : ω ∈ A or ω ∈ B but not in both }

Note that for indicators we have

1A∩B = 1A1B, 1A∪B = 1A + 1B − 1A1B

1(A∆B) =
(
1A + 1B

)
mod 2 = 1A + 1B − 2× 1A1B = 1A1Bc + 1B1Ac

Show that 2Ω is a ring with respect to the operations ∆ (sum) and ∩
(product), which means

• Find an identity element with respect to the operation ∆.
Solution The emptyset ∅ is the identity w.r.t. ∆ since A∆∅ =
∅∆A = A, ∀A ⊆ Ω.

• Find an identity element with respect to the operation ∩.
Solution Ω is the identity w.r.t. ∩ since A ∩ Ω = Ω ∩ A = A,
∀A ⊆ Ω.

• Show that every element A ⊂ Ω has an additive inverse.
Solution A∆A = ∅, which means A = (−A) is the inverse of
itself with respect to ∆.

• Show that ∆ is associative and the distributive property holds
between ∆ and ∩.
We use the indicators: Note that

1A∩B = 1A1B, 1A∪B = 1A + 1B − 1A1B,

and 1A∆B = 1A + 1B − 21A1B

The distributive property means

(A∆B) ∩ C =
(
(A ∪B) ∩ C

)
\ (A ∩B ∩ C)

=
(
(A ∩ C) ∪ (B ∩ C)

)
\
(
(A ∩ C) ∩ (B ∩ C)) = (A ∩ C)∆(B ∩ C)

For the associative property we use the indicators: Note that

1A∩B = 1A1B, 1A∪B = 1A + 1B − 1A1B,

and 1A∆B = 1A + 1B − 21A1B
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we have

1(A∆B)∆C = 1A∆B + 1C − 21A∆B1C

= 1A∆B(1− 21C) + 1C =
(
1A + 1B − 21A1B

)
(1− 21C) + 1C

= 1A + 1B + 1C − 21A1B − 21A1C − 21B1C + 41A1B1C

= 1(A∆C)∆B = 1(B∆C)∆A

where expression in the second last line does not depend on the
order we take the symmetric differences of A,B,C.

4. Consider an arbitrary collection of σ-algebrae {Gα : α ∈ I} on the same
set Ω.

Show that the intersection of σ-algebrae

G :=
⋂
α∈I

Gα

is a σ-algebra.

Solution.

• Ω, ∅ ∈ Gα∀α ∈ I since Gα is a σ-algebra, therefore Ω, ∅ ∈ G.
• When A ∈ Gα∀α ∈ I also the complemnt Ac ∈ Gα∀α ∈ I, there-

fore Ac ∈ G when A ∈ G.
• When {An : n ∈ N} ⊆ Gα∀α ∈ I, also A =

⋃
n∈NAn ∈ Gα∀α ∈ I,

which means A ∈ G when {An : n ∈ N} ⊆ G.

5. About countable and uncountable sets:

(a) Show that in the blackboard represented as [0, 1]2 there is place for
an uncountable amount of mutually non-intersecting zero symbols
’O’, (circles), where the circles can be also inside each other but
they should not touch each other.

(b) Show that on the blackboard = [0, 1]2 or on an infinite black-
board like = R2 there is place for at most a countable numbers of
mutually non-intersecting ’8’ symbols, or ∞-symbols if you like,
where the symbols can contain each other but the boundaries of
different curves cannot touch each other.

Solution
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(a) Consider the circles Cr = { (x, y) ∈ R2 : x2 + y2 = r2} ⊂ [0, 1]2

0 < r < 1/2. For 0 < r 6= t ≤ 1/2, Cr ∩ Ct = ∅, with uncountable
index set [0, 1/2].

(b) Consider a collection of non-intersecting curves with the shape of
the ∞ symbol, where possibly an 8-curve can lay in the region
bounded by another 8-curve, without intersections.
For every 8-curve we can choose two points p and q ∈ Q2 such
that each lies inside a different region delimited by the two differnt
loops forming the curve, and choose the pair (p, q) as a label for
this particular 8-curve.
No other 8-curve can have the same labels, it cannot contain both
points p and q inside different loops without intersecting the 8-
curve labels by p and q. Since each such 8-curve can be labeled
by two points with rational coordinates, and no other 8-curve can
have the same labels, and Q2 is countable, it follows that the set
of 8-curves which we can draw on the plane without intersections
must be countable.
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