HU, Probability Theory Fall 2015, Problems 1 (9.9.2015)

1. Let $\Omega = [0,1] \cap \mathbb{Q} = \{r \text{ rational} : 0 \le r \le 1 \},$

and \mathcal{A} the collection of sets which can be represented as finite unions of intervals of type $(a,b] \cap \mathbb{Q}$, $[a,b] \cap \mathbb{Q}$, $(a,b) \cap \mathbb{Q}$, or $[a,b) \cap \mathbb{Q}$, with $0 \le a \le b \le 1$.

Define $\forall 0 \leq a \leq b \leq 1$

$$P_0((a,b] \cap \mathbb{Q}) = P_0([a,b] \cap \mathbb{Q}) = P_0((a,b) \cap \mathbb{Q}) = P_0([a,b) \cap \mathbb{Q}) = b - a,$$

- Show \mathcal{A} is an algebra, which means $\Omega \in \mathcal{A}$, and when $A \in \mathcal{A}$ also $A^c := (\Omega \setminus A) \in \mathcal{A}$ and if $A, B \in \mathcal{A}$ also $A \cup B \in \mathcal{A}$.
- Extend the function P_0 to a finitely additive probability on the algebra \mathcal{A} .
- Show that such additive P_0 is not σ -additive.

Hint $\Omega = [0,1] \cap \mathbb{Q}$ is countable!.

Solution. If $A, B \subseteq [0, 1]$ are finite union of intervals (which could be either open or closed on each side), also the complementa $A^c = [0, 1] \setminus A$, $B^c = [0, 1] \setminus B$ in $\Omega = [0, 1]$ are finite union of intervals, and the intersection $A \cap B$ is a finite union of intervals. Since $A \cup B = (A^c \cap B^c)^c$, the same follows for finite union of intervals.

The same properties hold after taking intersection with the rationals \mathbb{Q} , which means that \mathcal{A} is an algebra.

Assume that $A \in \mathcal{A}$ has representation

$$A = \bigcup_{i=1}^{n} \langle a_i, b_i \rangle \cap \mathbb{Q} \tag{0.1}$$

where $0 \le a_1 \le b_1 \le \cdots \le a_n \le b_n \le 1$,

and we use the same notation " \langle " for both open and closed parenthesis "(", "[",

and the same notation "">" for both ""]", "")".

Note that such representation is not unique, for example $[a, c] = [a, b] \cup [b, c] = [a, b] \cup [b, c] = [a, b] \cup (b, c]$.

For A with is represented by disjoint rational intervals as in (0.1)

$$P_0(A) = \sum_{i=1}^{n} (b_i - a_i)$$

 P_0 is finitely additive but it cannot be countably additive since

$$\Omega = \bigcup_{q \in \mathbb{Q} \cap [0,1]} \{ q \},$$

with $P_0(\lbrace q \rbrace) = q - q = 0$, while $P_0(\Omega) = P_0([0,1]) = 1 - 0 = 1$, which is contradiction with σ -additivity since

$$1 = P_0(\Omega) \neq \sum_{q \in [0,1] \cap \mathbb{Q}} P_0(\{q\}) \quad \Box$$

2. Consider an abstract set Ω , and define the collection

 $\mathcal{A} = \{ A \subseteq \Omega : \text{ either } A \text{ or its complement } A^c = \Omega \setminus A \text{ is finite } \}$

- Show that when $\#\Omega = \infty \mathcal{A}$ is an algebra but it is not a σ -algebra.
- For $A \in \mathcal{A}$, define Q(A) = 0 when A is finite and Q(A) = 1 when A is infinite. Show that Q is finitely additive on \mathcal{A} but not σ -additive.

Solution: Note that if $A_1, A_2 \in \mathcal{A}$ are infinite sets with finite complement, such that $Q(A_1) = Q(A_2) = 1$, necessarily $A \cap B \neq \emptyset$, because otherwise by taking complements we would get

$$\Omega = A^c \cup B^c$$

as union of finite sets is finite, which is contraddiction with the assumption $\#\Omega = \infty$.

Now if A_1 and A_2 are finite, $A_1 \cup A_2$ is finite and finite additivity is satisfied for

$$Q(A_1 \cup A_2) = 0 = 0 + 0 = Q(A_1) + Q(A_2)$$

If A_1 is finite and A_2^c is finite, then $A_1 \cup A_2$ is infinite with complement $A_1^c \cap A_2^c \subseteq A_1^c$ which is finite, and finite additivity is satisfied for

$$Q(A_1 \cup A_2) = 1 = 1 + 0 = Q(A_1) + Q(A_2)$$

If A_1^c and A_2^c are finite, then $A_1 \cap A_2 \neq \emptyset$. In this case

$$Q(A_1 \cup A_2) = 1 < (1+1) = Q(A_1) + Q(A_2),$$

but this does not contradict finite additivity since A_1 and A_2 are not disjoint.

3. Let Ω an abstract set and 2^{Ω} its power, which is the collection of subsets $A \subset \Omega$.

Define the symmetric difference of $A, B \subseteq \Omega$ as

$$A\Delta B = (A \cup B) \setminus (A \cap B) = \{\omega : \omega \in A \text{ or } \omega \in B \text{ but not in both } \}$$

Note that for indicators we have

$$\mathbf{1}_{A \cap B} = \mathbf{1}_A \mathbf{1}_B, \quad \mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B$$
 $\mathbf{1}_{(A \Delta B)} = (\mathbf{1}_A + \mathbf{1}_B) \mod 2 = \mathbf{1}_A + \mathbf{1}_B - 2 \times \mathbf{1}_A \mathbf{1}_B = 1_A \mathbf{1}_{B^c} + \mathbf{1}_B \mathbf{1}_{A^c}$

Show that 2^{Ω} is a **ring** with respect to the operations Δ (sum) and \cap (product), which means

- Find an identity element with respect to the operation Δ . **Solution** The emptyset \emptyset is the identity w.r.t. Δ since $A\Delta\emptyset = \emptyset \Delta A = A, \forall A \subset \Omega$.
- Find an identity element with respect to the operation \cap . Solution Ω is the identity w.r.t. \cap since $A \cap \Omega = \Omega \cap A = A$, $\forall A \subseteq \Omega$.
- Show that every element A ⊂ Ω has an additive inverse.
 Solution AΔA = ∅, which means A = (-A) is the inverse of itself with respect to Δ.
- Show that Δ is associative and the distributive property holds between Δ and \cap .

We use the indicators: Note that

$$\mathbf{1}_{A \cap B} = \mathbf{1}_A \mathbf{1}_B, \quad \mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B,$$

and $\mathbf{1}_{A \Delta B} = \mathbf{1}_A + \mathbf{1}_B - 2\mathbf{1}_A \mathbf{1}_B$

The distributive property means

$$(A\Delta B) \cap C = ((A \cup B) \cap C) \setminus (A \cap B \cap C)$$
$$= ((A \cap C) \cup (B \cap C)) \setminus ((A \cap C) \cap (B \cap C)) = (A \cap C)\Delta(B \cap C)$$

For the associative property we use the indicators: Note that

$$\mathbf{1}_{A \cap B} = \mathbf{1}_A \mathbf{1}_B, \quad \mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B,$$

and $\mathbf{1}_{A \Delta B} = \mathbf{1}_A + \mathbf{1}_B - 2\mathbf{1}_A \mathbf{1}_B$

we have

$$\begin{aligned} \mathbf{1}_{(A\Delta B)\Delta C} &= \mathbf{1}_{A\Delta B} + \mathbf{1}_{C} - 2\mathbf{1}_{A\Delta B}\mathbf{1}_{C} \\ &= \mathbf{1}_{A\Delta B}(1 - 2\mathbf{1}_{C}) + \mathbf{1}_{C} = (\mathbf{1}_{A} + \mathbf{1}_{B} - 2\mathbf{1}_{A}\mathbf{1}_{B})(1 - 2\mathbf{1}_{C}) + \mathbf{1}_{C} \\ &= \mathbf{1}_{A} + \mathbf{1}_{B} + \mathbf{1}_{C} - 2\mathbf{1}_{A}\mathbf{1}_{B} - 2\mathbf{1}_{A}\mathbf{1}_{C} - 2\mathbf{1}_{B}\mathbf{1}_{C} + 4\mathbf{1}_{A}\mathbf{1}_{B}\mathbf{1}_{C} \\ &= \mathbf{1}_{(A\Delta C)\Delta B} = \mathbf{1}_{(B\Delta C)\Delta A} \end{aligned}$$

where expression in the second last line does not depend on the order we take the symmetric differences of A, B, C.

4. Consider an arbitrary collection of σ -algebrae $\{\mathcal{G}_{\alpha} : \alpha \in \mathcal{I}\}$ on the same set Ω .

Show that the intersection of σ -algebrae

$$\mathcal{G}:=igcap_{lpha\in\mathcal{I}}\mathcal{G}_lpha$$

is a σ -algebra.

Solution.

- $\Omega, \emptyset \in \mathcal{G}_{\alpha} \forall \alpha \in \mathcal{I}$ since \mathcal{G}_{α} is a σ -algebra, therefore $\Omega, \emptyset \in \mathcal{G}$.
- When $A \in \mathcal{G}_{\alpha} \forall \alpha \in \mathcal{I}$ also the complemnt $A^c \in \mathcal{G}_{\alpha} \forall \alpha \in \mathcal{I}$, therefore $A^c \in \mathcal{G}$ when $A \in \mathcal{G}$.
- When $\{A_n : n \in \mathbb{N}\} \subseteq \mathcal{G}_{\alpha} \forall \alpha \in \mathcal{I}$, also $A = \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{G}_{\alpha} \forall \alpha \in \mathcal{I}$, which means $A \in \mathcal{G}$ when $\{A_n : n \in \mathbb{N}\} \subseteq \mathcal{G}$.
- 5. About countable and uncountable sets:
 - (a) Show that in the blackboard represented as $[0,1]^2$ there is place for an uncountable amount of mutually non-intersecting zero symbols 'O', (circles), where the circles can be also inside each other but they should not touch each other.
 - (b) Show that on the blackboard $= [0,1]^2$ or on an infinite blackboard like $= \mathbb{R}^2$ there is place for at most a countable numbers of mutually non-intersecting '8' symbols, or ∞ -symbols if you like, where the symbols can contain each other but the boundaries of different curves cannot touch each other.

Solution

- (a) Consider the circles $C_r = \{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 = r^2 \} \subset [0,1]^2$ 0 < r < 1/2. For $0 < r \neq t \leq 1/2$, $C_r \cap C_t = \emptyset$, with uncountable index set [0,1/2].
- (b) Consider a collection of non-intersecting curves with the shape of the ∞ symbol, where possibly an 8-curve can lay in the region bounded by another 8-curve, without intersections.

For every 8-curve we can choose two points p and $q \in \mathbb{Q}^2$ such that each lies inside a different region delimited by the two different loops forming the curve, and choose the pair (p,q) as a label for this particular 8-curve.

No other 8-curve can have the same labels, it cannot contain both points p and q inside different loops without intersecting the 8-curve labels by p and q. Since each such 8-curve can be labeled by two points with rational coordinates, and no other 8-curve can have the same labels, and \mathbb{Q}^2 is countable, it follows that the set of 8-curves which we can draw on the plane without intersections must be countable.