HU, Probability Theory Fall 2015, Problems 1 (9.9.2015)

1. Let $\Omega=[0,1] \cap \mathbb{Q}=\{r$ rational : $0 \leq r \leq 1\}$,
and \mathcal{A} the collection of sets which can be represented as finite unions of intervals of type $(a, b] \cap \mathbb{Q},[a, b] \cap \mathbb{Q},(a, b) \cap \mathbb{Q}$, or $[a, b) \cap \mathbb{Q}$, with $0 \leq a \leq b \leq 1$.
Define $\forall 0 \leq a \leq b \leq 1$
$P_{0}((a, b] \cap \mathbb{Q})=P_{0}([a, b] \cap \mathbb{Q})=P_{0}((a, b) \cap \mathbb{Q})=P_{0}([a, b) \cap \mathbb{Q})=b-a$,

- Show \mathcal{A} is an algebra, which means $\Omega \in \mathcal{A}$, and when $A \in \mathcal{A}$ also $A^{c}:=(\Omega \backslash A) \in \mathcal{A}$ and if $A, B \in \mathcal{A}$ also $A \cup B \in \mathcal{A}$.
- Extend the function P_{0} to a finitely additive probability on the algebra \mathcal{A}.
- Show that such additive P_{0} is not σ-additive.

Hint $\Omega=[0,1] \cap \mathbb{Q}$ is countable !.
Solution. If $A, B \subseteq[0,1]$ are finite union of intervals (which could be either open or closed on each side), also the complementa $A^{c}=[0,1] \backslash A$, $B^{c}=[0,1] \backslash B$ in $\Omega=[0,1]$ are finite union of intervals, and the intersection $A \cap B$ is a finite union of intervals. Since $A \cup B=\left(A^{c} \cap B^{c}\right)^{c}$, the same follows for finite union of intervals.
The same properties hold after taking intersection withg the rationals \mathbb{Q}, which means that \mathcal{A} is an algebra.
Assume that $A \in \mathcal{A}$ has representation

$$
\begin{equation*}
A=\bigcup_{i=1}^{n}\left\langle a_{i}, b_{i}\right\rangle \cap \mathbb{Q} \tag{0.1}
\end{equation*}
$$

where $0 \leq a_{1} \leq b_{1} \leq \cdots \leq a_{n} \leq b_{n} \leq 1$,
and we use the same notation " \langle " for both open and closed parenthesis "(", " "",
and the same notation " \rangle " for both "]", ")".
Note that such representation is not unique, for example $[a, c]=[a, b) \cup$ $[b, c]=[a, b] \cup[b, c]=[a, b] \cup(b, c]$.
For A with is represented by disjoint rational intervals as in 0.1)

$$
P_{0}(A)=\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)
$$

P_{0} is finitely additive but it cannot be countably additive since

$$
\Omega=\bigcup_{q \in \mathbb{Q} \cap[0,1]}\{q\},
$$

with $P_{0}(\{q\})=q-q=0$, while $P_{0}(\Omega)=P_{0}([0,1])=1-0=1$, which is contradiction with σ-additivity since

$$
1=P_{0}(\Omega) \neq \sum_{q \in[0,1] \cap \mathbb{Q}} P_{0}(\{q\})
$$

2. Consider an abstract set Ω, and define the collection

$$
\mathcal{A}=\left\{A \subseteq \Omega: \text { either } A \text { or its complement } A^{c}=\Omega \backslash A \text { is finite }\right\}
$$

- Show that when $\# \Omega=\infty \mathcal{A}$ is an algebra but it is not a σ-algebra.
- For $A \in \mathcal{A}$, define $Q(A)=0$ when A is finite and $Q(A)=1$ when A is infinite. Show that Q is finitely additive on \mathcal{A} but not σ-additive.

Solution: Note that if $A_{1}, A_{2} \in \mathcal{A}$ are infinite sets with finite complement, such that $Q\left(A_{1}\right)=Q\left(A_{2}\right)=1$, necessarily $A \cap B \neq \emptyset$, because otherwise by taking complements we would get

$$
\Omega=A^{c} \cup B^{c}
$$

as union of finite sets is finite, which is contraddiction with the assumption $\# \Omega=\infty$.
Now if A_{1} and A_{2} are finite, $A_{1} \cup A_{2}$ is finite and finite additivity is satisfied for

$$
Q\left(A_{1} \cup A_{2}\right)=0=0+0=Q\left(A_{1}\right)+Q\left(A_{2}\right)
$$

If A_{1} is finite and A_{2}^{c} is finite, then $A_{1} \cup A_{2}$ is infinite with complement $A_{1}^{c} \cap A_{2}^{c} \subseteq A_{1}^{c}$ which is finite, and finite additivity is satisfied for

$$
Q\left(A_{1} \cup A_{2}\right)=1=1+0=Q\left(A_{1}\right)+Q\left(A_{2}\right)
$$

If A_{1}^{c} and A_{2}^{c} are finite, then $A_{1} \cap A_{2} \neq \emptyset$. In this case

$$
Q\left(A_{1} \cup A_{2}\right)=1<(1+1)=Q\left(A_{1}\right)+Q\left(A_{2}\right)
$$

but this does not contradict finite additivity since A_{1} and A_{2} are not disjoint.
3. Let Ω an abstract set and 2^{Ω} its power, which is the collection of subsets $A \subseteq \Omega$.

Define the symmetric difference of $A, B \subseteq \Omega$ as

$$
A \Delta B=(A \cup B) \backslash(A \cap B)=\{\omega: \omega \in A \text { or } \omega \in B \text { but not in both }\}
$$

Note that for indicators we have

$$
\begin{aligned}
& \mathbf{1}_{A \cap B}=\mathbf{1}_{A} \mathbf{1}_{B}, \quad \mathbf{1}_{A \cup B}=\mathbf{1}_{A}+\mathbf{1}_{B}-\mathbf{1}_{A} \mathbf{1}_{B} \\
& \mathbf{1}_{(A \Delta B)}=\left(\mathbf{1}_{A}+\mathbf{1}_{B}\right) \bmod 2=\mathbf{1}_{A}+\mathbf{1}_{B}-2 \times \mathbf{1}_{A} \mathbf{1}_{B}=1_{A} \mathbf{1}_{B^{c}}+\mathbf{1}_{B} \mathbf{1}_{A^{c}}
\end{aligned}
$$

Show that 2^{Ω} is a ring with respect to the operations Δ (sum) and \cap (product), which means

- Find an identity element with respect to the operation Δ.

Solution The emptyset \emptyset is the identity w.r.t. Δ since $A \Delta \emptyset=$ $\emptyset \Delta A=A, \forall A \subseteq \Omega$.

- Find an identity element with respect to the operation \cap.

Solution Ω is the identity w.r.t. \cap since $A \cap \Omega=\Omega \cap A=A$, $\forall A \subseteq \Omega$.

- Show that every element $A \subset \Omega$ has an additive inverse.

Solution $A \Delta A=\emptyset$, which means $A=(-A)$ is the inverse of itself with respect to Δ.

- Show that Δ is associative and the distributive property holds between Δ and \cap.
We use the indicators: Note that

$$
\begin{aligned}
& \mathbf{1}_{A \cap B}=\mathbf{1}_{A} \mathbf{1}_{B}, \quad \mathbf{1}_{A \cup B}=\mathbf{1}_{A}+\mathbf{1}_{B}-\mathbf{1}_{A} \mathbf{1}_{B}, \\
& \quad \text { and } \mathbf{1}_{A \Delta B}=\mathbf{1}_{A}+\mathbf{1}_{B}-2 \mathbf{1}_{A} \mathbf{1}_{B}
\end{aligned}
$$

The distributive property means

$$
\begin{aligned}
& (A \Delta B) \cap C=((A \cup B) \cap C) \backslash(A \cap B \cap C) \\
& =((A \cap C) \cup(B \cap C)) \backslash((A \cap C) \cap(B \cap C))=(A \cap C) \Delta(B \cap C)
\end{aligned}
$$

For the associative property we use the indicators: Note that

$$
\begin{aligned}
& \mathbf{1}_{A \cap B}=\mathbf{1}_{A} \mathbf{1}_{B}, \quad \mathbf{1}_{A \cup B}=\mathbf{1}_{A}+\mathbf{1}_{B}-\mathbf{1}_{A} \mathbf{1}_{B}, \\
& \quad \text { and } \mathbf{1}_{A \Delta B}=\mathbf{1}_{A}+\mathbf{1}_{B}-2 \mathbf{1}_{A} \mathbf{1}_{B}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \mathbf{1}_{(A \Delta B) \Delta C}=\mathbf{1}_{A \Delta B}+\mathbf{1}_{C}-2 \mathbf{1}_{A \Delta B} \mathbf{1}_{C} \\
& =\mathbf{1}_{A \Delta B}\left(1-2 \mathbf{1}_{C}\right)+\mathbf{1}_{C}=\left(\mathbf{1}_{A}+\mathbf{1}_{B}-2 \mathbf{1}_{A} \mathbf{1}_{B}\right)\left(1-2 \mathbf{1}_{C}\right)+\mathbf{1}_{C} \\
& =\mathbf{1}_{A}+\mathbf{1}_{B}+\mathbf{1}_{C}-2 \mathbf{1}_{A} \mathbf{1}_{B}-2 \mathbf{1}_{A} \mathbf{1}_{C}-2 \mathbf{1}_{B} \mathbf{1}_{C}+4 \mathbf{1}_{A} \mathbf{1}_{B} \mathbf{1}_{C} \\
& =\mathbf{1}_{(A \Delta C) \Delta B}=\mathbf{1}_{(B \Delta C) \Delta A}
\end{aligned}
$$

where expression in the second last line does not depend on the order we take the symmetric differences of A, B, C.
4. Consider an arbitrary collection of σ-algebrae $\left\{\mathcal{G}_{\alpha}: \alpha \in \mathcal{I}\right\}$ on the same set Ω.

Show that the intersection of σ-algebrae

$$
\mathcal{G}:=\bigcap_{\alpha \in \mathcal{I}} \mathcal{G}_{\alpha}
$$

is a σ-algebra.

Solution.

- $\Omega, \emptyset \in \mathcal{G}_{\alpha} \forall \alpha \in \mathcal{I}$ since \mathcal{G}_{α} is a σ-algebra, therefore $\Omega, \emptyset \in \mathcal{G}$.
- When $A \in \mathcal{G}_{\alpha} \forall \alpha \in \mathcal{I}$ also the complemnt $A^{c} \in \mathcal{G}_{\alpha} \forall \alpha \in \mathcal{I}$, therefore $A^{c} \in \mathcal{G}$ when $A \in \mathcal{G}$.
- When $\left\{A_{n}: n \in \mathbb{N}\right\} \subseteq \mathcal{G}_{\alpha} \forall \alpha \in \mathcal{I}$, also $A=\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{G}_{\alpha} \forall \alpha \in \mathcal{I}$, which means $A \in \mathcal{G}$ when $\left\{A_{n}: n \in \mathbb{N}\right\} \subseteq \mathcal{G}$.

5. About countable and uncountable sets:
(a) Show that in the blackboard represented as $[0,1]^{2}$ there is place for an uncountable amount of mutually non-intersecting zero symbols 'O', (circles), where the circles can be also inside each other but they should not touch each other.
(b) Show that on the blackboard $=[0,1]^{2}$ or on an infinite blackboard like $=\mathbb{R}^{2}$ there is place for at most a countable numbers of mutually non-intersecting ' 8 ' symbols, or ∞-symbols if you like, where the symbols can contain each other but the boundaries of different curves cannot touch each other.

Solution

(a) Consider the circles $C_{r}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=r^{2}\right\} \subset[0,1]^{2}$ $0<r<1 / 2$. For $0<r \neq t \leq 1 / 2, C_{r} \cap C_{t}=\emptyset$, with uncountable index set $[0,1 / 2]$.
(b) Consider a collection of non-intersecting curves with the shape of the ∞ symbol, where possibly an 8 -curve can lay in the region bounded by another 8 -curve, without intersections.
For every 8-curve we can choose two points p and $q \in \mathbb{Q}^{2}$ such that each lies inside a different region delimited by the two differnt loops forming the curve, and choose the pair (p, q) as a label for this particular 8-curve.
No other 8-curve can have the same labels, it cannot contain both points p and q inside different loops without intersecting the 8 curve labels by p and q. Since each such 8 -curve can be labeled by two points with rational coordinates, and no other 8-curve can have the same labels, and \mathbb{Q}^{2} is countable, it follows that the set of 8 -curves which we can draw on the plane without intersections must be countable.

