
UH Probability Theory I, autumn 2015, exam solutions(English)
(4.11.2015)

You can choose whether to write the exam in English or in Finnish, the
Finnish version of the same exam is also available!

Choose 4 problems out of the list { 1, 2, 3, 4, 5}, and answer to all prob-
lems questions.

In the problems, all random variables are defined on a probability space
(Ω,F , P ).

1. LetX(ω) be an R-valued random variable on a probability space (Ω,F ,P).
and let FX(t) = P

(
{ω : X(ω) ≤ t}

)
its cumulative distribution func-

tion.
Prove the following properties

(a) F (+∞) := limt→+∞ F (t) = 1 and F (−∞) := limt→−∞ F (t) = 0

(b) F is non-decreasing, F (s) ≤ F (t) when s ≤ t.
(c) F is right continuous F (t+) = limu↓t F (u) = F (t) ∀t ∈ R.
(d) the set of discontinuites{

t : ∆F (t) =
(
F (t)− F (t−)

)
> 0
}

where F (t−) = limr↑t F (r) denotes the left limit, is at most count-
able.

Hint: when you take limits, use the σ-additivity of the probability
measure.
Solutions:

(a) F (+∞) = limn↑∞ F (n) = limn↑∞ P (X ≤ n) = P (X ∈ R),
since (−∞, n] ↑ R and P is σ-additive.

(b) F (−∞) = limn↑∞ F (−n) = limn↑∞ P (X ≤ −n) = P (X ∈ ∅) = 0,
since (−∞,−n] ↓ ∅ and P is σ-additive.

(c) For s ≤ t (−∞, s] ⊆ (−∞t], and since P is additive,
F (s) = P (X ∈ (−∞, s]) ≤ F (t) = P (X ∈ (−∞, t])

(d) Let F (t+) = limn↑∞ F (t+1/n) = limn→∞ P (X ∈ (−∞, t+1/n]) =
P (X ∈ (−∞, t]) = F (t),
since (−∞, t + 1/n] ↓

⋂
n∈N(−∞, t + 1/n] = (−∞, t] and P is

σ-additive.
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(e) To show that the set of discontinuities is at most countable, since
F (t) is non-decreasing with values in [0, 1],

1 = F (+∞)− F (−∞) ≥
∑
t∈R

∆F (t)

which implies

#
{
t : ∆F (t) > 1/n} ≤ n

}
≤ n <∞

and {
t : ∆F (t) > 0} ≤ n

}
=
⋃
n∈N

{
t : ∆F (t) > 1/n} ≤ n

}
is countable because it is the countable union of finite sets.

(f) We say that a sequence of random variables (Xn : n ∈ N) con-
verges stochastically (or also in probability) to a random variable
X, and use the notation Xn

P→ X , when ∀η > 0

lim
n→∞

P
(
{|Xn −X| > η}

)
= 0

i. Prove that when Xn
L1(P )→ X in L1(P ) norm,

meaning that EP

(
|Xn − X|

)
→ 0, then Xn

P→ X (in proba-
bility).
Solution By Chebychev inequality ∀η > 0,

|Xn(ω)−X(ω)| ≥ η1
(
|Xn(ω)−X(ω)| > η

)
by taking expectation

P
(
|Xn(ω)−X(ω)| > η

)
≤ 1

η
EP

(
|Xn(ω)−X(ω)|

)
−→ 0

ii. Let X(ω), X̃(ω) and Xn(ω), n ∈ N random variables.

Prove the following statement: if Xn(ω) → X(ω) P -almost
surely as n→∞ ,

and Xn(ω)
L1(P )→ X̃(ω),

(which means EP (|Xn −X|)→ 0 kun n→∞ ),
then it follows that X̃(ω) = X(ω) P -almost surely.
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Solution Since convergence in L1(P )-norm implies stochastic
convergence, we can write ∀K ∈ N,

P
(
|X − X̃| > 1/K

)
= P

(
|X −Xn +X − X̃| > 1/K

)
≤ P

(
|X −Xn|+ |Xn − X̃| > 1/K

)
∀n ∈ N, where the right hand side converges to zero by using the
previous result and the result in the next problem. Since the lest
hand side does not depend on n necessarily

P
(
|X − X̃| > 1/K

)
= 0

and by taking the countable union of P -null sets we obtain

P
(
|X − X̃| > O

)
= P

(⋃
K∈N

{
|X − X̃| > 1/K

})
≤
∑
K∈N

P
({
|X − X̃| > 1/K

})
= 0

which means that P
({

ω : X(ω) = X̃(ω)
)

= 1

(g) LetX,X1, X2, . . . Xn, . . . and Y, Y1, Y2, . . . , Xn, . . . be random vari-
ables on the probability space (Ω,F , P ) such that

Xn
P−→ X and Yn

P−→ Y (in probability).

Show that (Xn + Yn)
P−→ (X + Y ).

Hint for a, b ∈ R, |a+ b| > η =⇒ |a| > η/2 or |b| > η/2

Solution For η > 0

P
(
|(Xn + Yn)− (X + Y )| > η

)
= P

(
|(Xn −X) + (Yn − Y )| > η

)
≤ P

(
|Xn −X|+ |Yn − Y | > η

)
≤ P

(
{ |Xn −X| > η/2} ∪ { |Yn − Y | > η/2}

)
≤ P

(
|Xn −X| > η/2

)
+ P

(
|Yn − Y | > η/2

)
−→ 0

as n→∞ since Xn
P−→ X and Yn

P−→ Y (in probability).

(h) Let U(ω) and V (ω) be random variables such that ∀s, t ∈ [0, 1],

P (U ≤ s, V ≤ t) = st

i. Show that U and V are independent and both uniformly dis-
tributed on [0, 1].
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ii. LetX(ω) = U(ω)V (ω). Show that the map ω 7→ X(ω) defines
a random variable, and compute the cumulative distribution
function of X

FX(t) = P (X ≤ t) = P (UV ≤ t)

Hint: for any bounded Borel measurable function g(u, v),

EP

(
g(U, V )) =

∫ 1

0

∫ 1

0

g(u, v)dudv

iii. Compute the probability density function of X.
iv. Compute the expectation EP (X) (Hint: you can compute first

EP (U) = EP (V ) and use independence).

Solution The cumulative distribution function is given by

FX(t) = P (X ≤ t)P (UV ≤ t) =

∫ 1

0

∫ 1

0

1(uv ≤ t)dudv =

∫ 1

0

(∫ 1∧(t/v)

0

du

)
dv =∫ t

0

(
1 ∧ t

v

)
dv =

∫ t

0

1dv +

∫ 1

t

t

v
dv = t− t log t = (1− log t)t

for t ∈ [0, 1], with P (UV ≤ t) = 0 for t ≤ 0 and P (UV ≤ t) = 1
for t ≥ 1. Note that by l’Hospital rule

lim
t↓0

FX(t) = lim
t↓0

(1− log t)t

= lim
t↓0

t− lim
t↓0

log t

1/t
= 0 + lim

t↓0

1/t

1/t2
= lim

t↓0
t = 0 = FX(0)

The density function is the derivative of the cumulative distribu-
tion function

pX(t) =
d

dt
FX(t) =

d

dt

(
(1− log t)t

)
= − log t for t ∈ [0, 1], 0 otherwise

Note that pX(0) = limt↓0 pX(t) = +∞ and this probability density
is unbounded. We can check that it is really a probability density:
− log t ≥ 0 for t ∈ [0, 1] and∫ 1

0

(− log t)dt =

∫ 1

0

td log t =

∫ 1

0

t
d log t

dt
dt =

∫ 1

0

tt−1dt =

∫ 1

0

1dt = 1

where we used the integration by parts formula. Since the X =
UV with U and V P -independent, and the expectation of the
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product of independent random variables is the product of the
expectations,

EP (X) = EP (UV ) = EP (U)EP (V ) = EP (U)2 = 1/4

where

EP (U) =

∫ 1

0

udu =
1

2

We may also compute EP (X) directly using the density pX(t):

EP (X) =

∫ 1

0

tpX(t)dt =

∫ 1

0

t(− log t)dt = −1

2

∫ 1

0

log tdt2 =

1

2

∫ t

0

t2d log(t) =
1

2

∫ t

0

t2t−1dt =
1

2

∫ 1

0

tdt =
1

2
× 1

2
=

1

4

where we used the integration by parts formula.

(i) Consider a sequence (Xn(ω) : n ∈ N) of P -independent random
variables which are identically distributed, with P (Xn(ω) ≥ 0) =
1 and EP (Xn) =∞.
This implies that ∀K > 0

∞∑
n=1

P (|Xn| > Kn) =
∞∑
n=1

P (|X1| > Kn) =∞

(it follows by Fubini Theorem but you do not need to prove it
now, since it was not in this part of the program)
Use Borel-Cantelli lemma (which one ?) to show that P -almost
surely

lim sup
n→∞

X1(ω) +X2(ω) + · · ·+Xn−1(ω) +Xn(ω)

n
= +∞

Solution Since the random variables Xn are independent, for each
fixed K > 0 the events AK

n = {ω : Xn(ω)/n > K} are independent. By
assumption

∑∞
n=1 P (AK

n ) = +∞ and the second Borel Cantelli lemma
under independence of the event sequence applies, so that

P

(
lim sup

n
AK

n

)
= 1 ∀K > 0
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in other words

P

({
ω : Xn(ω)/n > K for infinitely many indexes n

})
= 1

But this means that for each K ∈ N, with probability 1

lim sup
n

Xn(ω)

n
> K,

and since the countable intersection of P -almost sure events is a P -
almost sure event, this implies that with probability 1

lim sup
n→∞

X1(ω) +X2(ω) + · · ·+Xn−1(ω) +Xn(ω)

n
≥ lim sup

n

Xn(ω)

n
= +∞

where all random variables Xn(ω) are non-negative with probability 1.
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