
UH Probability Theory I, autumn 2015, exam (English) (29.11.2015)

You can choose whether to write the exam in English or in Finnish, the
Finnish version of the same exam is also available!

Choose 4 problems out of the list { 1, 2, 3, 4, 5}, and answer to all prob-
lems questions.

In the problems, all random variables are defined on a probability space
(Ω,F , P ).

1. Recall the monotone convergence Theorem :

If a sequence of non-negative random variables converges monotonically
to a limit, 0 ≤ Xn(ω) ↑ X(ω) P -almost surely as n → ∞, it follows
that the expectation are converging monotonically to the expectation
of the limit: EP (Xn) ↑ EP (X) ∈ [0,+∞].

(a) Prove Fatou lemma by using the monotone convergence Theorem:
for a sequence of non-negative random variables Xn(ω) ≥ 0 P -
melkein varmasti ∀n ∈ N, we have

EP
(
lim inf

n
Xn

)
≤ lim inf

n
EP
(
Xn

)
Solution Fatou Lemma is proved in your favourite probability
theory textbook and in the course lecture notes (Lemma 4.1.4).

(b) The reverse Fatou lemma is about thelim supnXn(ω), stating that
(under some assumptions on the sequence)

EP
(
lim sup

n
Xn) ≥ lim sup

n
EP (Xn)

Under which assumptions on Xn this is true ? Prove the reverse
Fatou lemma. Solution This does not hold without additional
assumptions (lemma 4.1.5 in the lecture notes) A sufficient condi-
tion is that thre is an upper bound Y (ω) ∈ L1(P ) such that

|Xn(ω)| ≤ Y (ω) P -almost surely ∀n ∈ N

(c) Let { Xn(ω) : n ∈ N} and X(ω) random variables such that

lim
n →∞

Xn(ω) = X(ω) P -almost surely (0.1)
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Give a sufficient condition for the convergence of the expectations
EP (Xn) → EP (X). Solution. By using Lebesgue dominated
convergence Theorem , which states that E(Xn) → E(X) when
Xn(ω)→ X(ω) P -almost surely and there is an integrable upper
bound Y ∈ L1(P ) such that

|Xn(ω)| ≤ Y (ω) P -almost surely ∀n ∈ N

Show also a counterexample where lim
n →∞

Xn(ω) = X(ω) P -almost
surely but EP (Xn) does not converge towards EP (X).
Solution. Check example(4.1.1) in the lecture notes.

2. On a probability space (Ω,F , P ), let G(ω) be a standard Gaussian
random variable with cumulative disrtibution function

Φ(t) = P (G ≤ t) =
1√
2π

∫ t

−∞
exp

(
− x2

2

)
dx (0.2)

(a) Compute the expectation EP
(

exp
(
G2λ/2

))
∈ [0,+∞] for λ ∈ R.

Hint Since Φ(t) is the cumulative distribution function of a prob-
ability, Φ(+∞) = 1 and∫ +∞

−∞
exp

(
− x2

2

)
dx =

√
2π . (0.3)

Solution.

EP

(
exp
(
G2λ/2

))
=

∫
R

exp
(
x2λ/2

)
P (G ∈ dx) =

1√
2π

∫ t

−∞
exp
(
x2λ/2

)
exp

(
− x2

2

)
dx =

1√
2π

∫ t

−∞
exp

(
− x2(1− λ)

2

)
dx

which is +∞ when λ ≥ 1, and for λ < 1, by the chamnge of
variable y = x

√
1− λ,

1√
2π

∫ t

−∞
exp

(
− y2

2

)∣∣∣∣dxdy
∣∣∣∣dy = (1− λ)−1/2P (G ∈ R) = (1− λ)−1/2

(b) Compute the upper bound on the right side of the Chentsov in-
equality below.

P (|G| ≥ t) = P

(
exp

(
λ G2

2

)
≥ exp

(
λ t2

2

))
∀λ > 0

=⇒ P (|G| ≥ t) ≤ inf
λ∈R

{
exp

(
−λt

2

2

)
EP

(
exp

(
λG2

2

))}
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Hint Find the infimum of the function by differentiating the func-
tion or its logarithm.
Solution. We minimize w.r.t. λ the logarithm

λ 7→ −λt
2

2
− 1

2
log(1− λ)

Since when the minimum is achieved at λ∗ the derivative should
be zero whenever it exists, we find that λ∗ = 1 − t−2, and corre-
sponding best upper bound is given by

inf
λ∈R

{
exp

(
−λt

2

2

)
(1− λ)−1/2

}
= exp

(
−λ∗t

2

2

)
(1− λ∗)−1/2 = exp

(
1− t2

2

)
t

P (|G| ≥ t) ≤ min

{
1, exp

(
1− t2

2

)
t

}
3. Let ε > 0, and (Xn(ω) ∈ N) a sequence of random variables (not

necessarily P -independent !) such that

P

(
Xn = (n(1+ε) − 1)

)
= n−(1+ε) = 1− P

(
Xn = −1

)
We can interpret Xn as the reward of a gambler in a lottery, where the
lottery ticket costs 1 e, giving the possibility to win n(1+ε) e with
probability n−(1+ε).

(a) Check that EP (Xn) = 0. This means in that the game is “fair”.
Solution

EP (Xn) = (n(1+ε) − 1)P (Xn = (n(1+ε) − 1)− P (Xn = −1) =(
n(1+ε) − 1

)
n−(1+ε) −

(
1− n−(1+ε)

)
= 0

(b) Prove :

∞∑
n=1

n−(1+ε)
{

=∞ for ε ≤ 0
<∞ for ε > 0

Solution
∞∑
n=2

n−(1+ε) ≤
∫ ∞
1

x−(1+ε)dx ≤
∞∑
n=1

x−(1+ε) ∀ε ∈ R
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which implies that
∞∑
n=1

n−(1+ε) <∞⇐⇒
∫ ∞
1

x−(1+ε)dx <∞

where the integral on the right side is given by:∫ t

1

x−(1+ε)dx =

{
ε−1(1− t−ε) for ε 6= 0

log(t)− log(1) = log(t) for ε = 0

Therefore∫ ∞
1

x−(1+ε)dx = lim
t→∞

∫ t

1

x−(1+ε)dx =

{
ε−1 <∞ kun ε > 0

+∞ for ε ≤ 0

(c) Let Sn(ω) = X1(ω) +X2(ω) + · · ·+Xn(ω), the total profit of the
gambler after n games, (negative values correspond to a loss).
Show that with probabiliy P = 1

lim
n→∞

Sn(ω)

n
= −1

Hint: use Borel Cantellin lemma ( which one, first or second ?).
Note that while the game is fair, a gambler which goes on playing
will eventually lose an infinite amount of money...!

Solution By assumption ε > 0, and∑
n∈N

P (Xn 6= −1) =
∑
n∈N

n−(1+ε) <∞

which by the first Borel Cantelli lemma implies

P
(
lim sup

n

{
ω : Xn(ω) 6= −1

})
= 0

and

P
(
lim inf

n

{
ω : Xn(ω) = −1

})
= 1

It means that, P -almost surely , there is N(ω) <∞ such that Xn(ω) =
−1 ∀n > N(ω).
This implies P -almost surely, ∀n > N(ω)

Sn(ω)

n
=
SN(ω)(ω)

n
− n−N(ω)

n

which implies

lim
n→∞

Sn(ω)

n
= lim

n→∞

SN(ω)(ω)

n
− lim

n→∞

n−N(ω)

n
= 0− 1
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4. We recall the definition of stochastic convergence (also called conver-
gence in probability) for a sequence of random variables
(Xn(ω) : n ∈ N):

Xn
P−→ 0 ⇐⇒ ∀η > 0, lim

n→∞
P
(
|Xn| > η

)
= 0

Show:

(a) If lim
n→∞

Xn(ω) = 0 P -almost surely, it follows that Xn
P−→ 0 (in

probability). Solution. See Proposition (6.1.1.1) in the lecture
notes

(b) If Xn
P−→ 0 (in probability), there exists a deterministic sub-

squence (nk : k ∈ N) such that lim
k→∞

Xnk
(ω) = 0 P -almost surely.

Hint Remember the Borel Cantelli lemma.
Solution. See Proposition (6.1.1.2) in the lecture notes.

(c) If Xn
Lq

−→ 0, meaning that lim
n→∞

EP
(
|Xn|q

)
= 0 with q > 0, it

follows Xn
P−→ 0 (in probability).

Hint Remember Chebychev inequality.
Solution . See page 85-85 in the Lecture notes.

(d)

Xn
P−→ 0 (in probability) ⇐⇒ d(Xn, 0) := EP

(
|Xn|

1 + |Xn|

)
−→ 0 as n→∞

Hint The map f : R+ → [0, 1] with f(x) = x/(1 + x) is strictly
increasing.
Solution. See Theorem (6.1.1) in the lecture notes.

5. On an abstract probability space (Ω,F ,P),
let N(ω) be a Poisson distributed random variable with parameter λ >
0, such that

P({ω : N(ω) = k}) = Pλ({k}) = exp(−λ)
λk

k!

(a) Check that (Pλ({k}) : k ∈ N) defines a probability distribution on
N = {0, 1, 2, . . . }, in particular that Pλ(N) = 1.
Solution :

Pλ(N) =
∞∑
k=0

Pλ({k}) = exp(−λ)
∞∑
k=0

λk

k!
= exp(−λ) exp(λ) = 1
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(b) Compute the moment generating function m : R→ [0,∞]

m(θ) = EP
(
exp(θN)

)
, θ ∈ R.

Solution :

EP
(
exp(θN)

)
=
∞∑
k=0

exp(θk)Pλ({k}) = exp(−λ)
∞∑
k=0

(
λ exp(θ)

)k
k!

=

exp(−λ) exp
(
λeθ
)

= exp
(
λ(eθ − 1)

)
(c) Prove the following Stein equation for the Poisson distribution:

λEP(g(N + 1)) = EP(Ng(N))

for a sequence (g(k) : k ∈ N) ⊆ R.
Solution

λEP(g(N + 1)) = λ exp(−λ)
∞∑
n=0

g(k + 1)
λk

k!

= λ exp(−λ)
∞∑
k=1

g(k)
λk−1

(k − 1)!
= exp(−λ)

∞∑
k=0

g(k)k
λk

k!
= EP(Ng(N))
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