HU, Probability Theory Fall 2015, Problems 7 (28.10.2015)
In the problems all random variables live in a probability space (Ω, \mathcal{F}, P).

1. On a probability space (Ω, \mathcal{F}, P),
let $\left(X_{n}(\omega): n \in \mathbb{N}\right)$ be a sequence of exponential random variables such that

$$
P\left(X_{1}>t_{1}, \ldots, X_{n}>t_{n}\right)=\exp \left(-\lambda \sum_{i=1}^{n} t_{n}\right) \quad \forall n \in \mathbb{N}, t_{1}, \ldots, t_{n} \geq 0
$$

where $\lambda>0$ is a parameter.
(a) Show that the random variables $\left(X_{n}(\omega): n \in \mathbb{N}\right)$ are independent under P.
(b) Let

$$
Y_{n}(\omega):=\min \left\{X_{1}(\omega), X_{2}(\omega), \ldots, X_{n}(\omega)\right\} .
$$

Compute $P\left(Y_{n}>t\right)$, and compute also the probability density function of Y_{n}.
(c) Let $X_{n}^{*}(\omega)=\max \left\{X_{1}(\omega), X_{2}(\omega), \ldots, X_{n}(\omega)\right\}$

Compute $P\left(X_{n}^{*} \leq t\right)$. Compute also the probability density function of X_{n}^{*}.
(d) Compute $\lim _{n \rightarrow \infty} P\left(\lambda X_{n}^{*} \leq t+\log (n)\right)$.

Hint: $(1+x / n)^{n} \longrightarrow \exp (x)$ as $n \rightarrow \infty$.
2. Consider a sequence of random variables $\left(U_{k}(\omega): k \in \mathbb{N}\right)$ such that for $\forall t_{1}, \ldots, t_{n} \in[0,1]$,

$$
P\left(U_{1} \leq t_{1}, \ldots, U_{n} \leq t_{n}\right)=\prod_{k=1}^{n} t_{k}
$$

(a) Show that $\left(U_{k}(\omega): k \in \mathbb{N}\right)$ are independent and uniformly distributed on $[0,1]$.
(b) Consider $\bar{U}_{n}(\omega)=\max \left\{U_{1}(\omega), \ldots, U_{n}(\omega)\right\}$.

Compute the cumulative distribution function of $\bar{U}_{n}, F_{\bar{U}_{n}}(t)=$ $P\left(\bar{U}_{n} \leq t\right)$.
(c) Show that $\lim _{n \rightarrow \infty} \bar{U}_{n}(\omega)=1 \mathbb{P}$-almost surely.
(d) Let $\underline{U}_{n}(\omega)=\min \left\{U_{1}(\omega), \ldots, U_{n}(\omega)\right\}$.

Compute the cumulative distribution function of $\underline{U}_{n}, F_{\underline{U}_{n}}(t)=$ $P\left(\underline{U}_{n} \leq t\right)$.
(e) Show that $\lim _{n \rightarrow \infty} \underline{U}_{n}(\omega)=0 \mathbb{P}$-almost surely.

Hint: $V_{n}=\left(1-U_{n}\right)$ has the same distribution as U_{n}, which implies that \underline{U}_{n} and $\left(1-\bar{U}_{n}\right)$ have the same distribution.
3. (a) let $X(\omega), X_{n}(\omega), n \in \mathbb{N}$ such that $X_{n}(\omega) \rightarrow X(\omega) P$-almost surely. Show that also the Cesaro mean converges P-almost surely to X

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}(\omega)=X(\omega) \quad P \text {-almost surely }
$$

(b) Assume now that $E_{P}\left(\left|X_{n}-X\right|\right) \rightarrow 0$, as $n \rightarrow \infty$ (without assuming P-almost sure convergence).
Show that the Cesaro mean is converging in $L^{1}(P)$, that is

$$
\lim _{n \rightarrow \infty} E_{P}\left(\left|\left\{\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\}-X(\omega)\right|\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Hint: note that by the triangle inequality

$$
\begin{aligned}
& \left|\left\{\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\}-X(\omega)\right| \leq \frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-X(\omega)\right|= \\
& \frac{1}{n} \sum_{i=1}^{M}\left|X_{i}-X(\omega)\right|+\frac{1}{n} \sum_{j=M+1}^{n}\left|X_{j}-X(\omega)\right|
\end{aligned}
$$

$\forall n \geq M$, where the inequalities are preserved after taking the expectation.
4. Let $X(\omega),\left(X_{n}(\omega): n \in \mathbb{N}\right)$, random variables on a probability space (Ω, \mathcal{F}, P).
Show that if $\forall \varepsilon>0$

$$
\sum_{n=0}^{\infty} P\left(\left|X_{n}(\omega)-X(\omega)\right|>\varepsilon\right)<\infty
$$

it follows $\lim _{n \uparrow \infty} X_{n}(\omega)=X(\omega) P$-almost surely.

Hint: show first that
$\left\{\omega: X_{n}(\omega) \nrightarrow X(\omega)\right\}=\bigcup_{k \in \mathbb{N}}\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|>k^{-1}\right.$ infinitely often $\}$
and recall Borel-Cantelli's lemma.
5. Consider a random variable $X(\omega)$ with $E_{P}(|X|)<\infty$. Show that

$$
E_{P}(|X| \mathbf{1}(|X|>n))=\int_{\Omega}|X(\omega)| \mathbf{1}(|X(\omega)|>n) P(d \omega) \rightarrow 0 \text { as } n \rightarrow \infty
$$

