HU, Probability Theory Fall 2015, Problems 7 (28.10.2015)

In the problems all random variables live in a probability space (Ω, \mathcal{F}, P) .

1. On a probability space (Ω, \mathcal{F}, P) ,

let $(X_n(\omega) : n \in \mathbb{N})$ be a sequence of exponential random variables such that

$$P(X_1 > t_1, \dots, X_n > t_n) = \exp\left(-\lambda \sum_{i=1}^n t_n\right) \quad \forall n \in \mathbb{N}, t_1, \dots, t_n \ge 0,$$

where $\lambda > 0$ is a parameter.

- (a) Show that the random variables $(X_n(\omega) : n \in \mathbb{N})$ are independent under P.
- (b) Let

$$Y_n(\omega) := \min\{X_1(\omega), X_2(\omega), \dots, X_n(\omega)\}.$$

Compute $P(Y_n > t)$, and compute also the probability density function of Y_n .

- (c) Let $X_n^*(\omega) = \max\{X_1(\omega), X_2(\omega), \dots, X_n(\omega)\}$ Compute $P(X_n^* \le t)$. Compute also the probability density function of X_n^* .
- (d) Compute $\lim_{n \to \infty} P\left(\lambda X_n^* \le t + \log(n)\right)$. **Hint**: $(1 + x/n)^n \longrightarrow \exp(x)$ as $n \to \infty$.
- 2. Consider a sequence of random variables $(U_k(\omega) : k \in \mathbb{N})$ such that for $\forall t_1, \ldots, t_n \in [0, 1],$

$$P(U_1 \le t_1, \dots, U_n \le t_n) = \prod_{k=1}^n t_k$$

- (a) Show that $(U_k(\omega) : k \in \mathbb{N})$ are independent and uniformly distributed on [0, 1].
- (b) Consider $\overline{U}_n(\omega) = \max\{U_1(\omega), \dots, U_n(\omega)\}.$ Compute the cumulative distribution function of $\overline{U}_n, F_{\overline{U}_n}(t) = P(\overline{U}_n \leq t).$
- (c) Show that $\lim_{n\to\infty} \overline{U}_n(\omega) = 1$ P-almost surely.

- (d) Let $\underline{U}_n(\omega) = \min\{U_1(\omega), \dots, U_n(\omega)\}$. Compute the cumulative distribution function of $\underline{U}_n, F_{\underline{U}_n}(t) = P(\underline{U}_n \leq t)$.
- (e) Show that $\lim_{n\to\infty} \underline{U}_n(\omega) = 0$ P-almost surely. Hint: $V_n = (1 - U_n)$ has the same distribution as U_n , which implies that \underline{U}_n and $(1 - \overline{U}_n)$ have the same distribution.
- 3. (a) let $X(\omega), X_n(\omega), n \in \mathbb{N}$ such that $X_n(\omega) \to X(\omega)$ *P*-almost surely. Show that also the Cesaro mean converges *P*-almost surely to *X*

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i(\omega) = X(\omega) \quad P\text{-almost surely}$$

(b) Assume now that $E_P(|X_n - X|) \to 0$, as $n \to \infty$ (without assuming *P*-almost sure convergence).

Show that the Cesaro mean is converging in $L^1(P)$, that is

$$\lim_{n \to \infty} E_P\left(\left| \left\{ \left. \frac{1}{n} \sum_{i=1}^n X_i \right\} - X(\omega) \right| \right) \to 0 \quad \text{as } n \to \infty \right.$$

Hint: note that by the triangle inequality

$$\left|\left\{ \left. \frac{1}{n} \sum_{i=1}^{n} X_{i} \right\} - X(\omega) \right| \leq \frac{1}{n} \sum_{i=1}^{n} \left| X_{i} - X(\omega) \right| = \frac{1}{n} \sum_{i=1}^{M} \left| X_{i} - X(\omega) \right| + \frac{1}{n} \sum_{j=M+1}^{n} \left| X_{j} - X(\omega) \right|$$

 $\forall n \geq M$, where the inequalities are preserved after taking the expectation.

4. Let $X(\omega), (X_n(\omega) : n \in \mathbb{N})$, random variables on a probability space (Ω, \mathcal{F}, P) .

Show that if $\forall \varepsilon > 0$

$$\sum_{n=0}^{\infty} P(|X_n(\omega) - X(\omega)| > \varepsilon) < \infty$$

it follows $\lim_{n \uparrow \infty} X_n(\omega) = X(\omega)$ *P*-almost surely.

 ${\bf Hint}:$ show first that

$$\left\{\omega: X_n(\omega) \not\to X(\omega)\right\} = \bigcup_{k \in \mathbb{N}} \left\{\omega: |X_n(\omega) - X(\omega)| > k^{-1} \text{ infinitely often } \right\}$$

and recall Borel-Cantelli's lemma.

5. Consider a random variable $X(\omega)$ with $E_P(|X|) < \infty$. Show that

$$E_P(|X|\mathbf{1}(|X|>n)) = \int_{\Omega} |X(\omega)|\mathbf{1}(|X(\omega)|>n)P(d\omega) \to 0 \text{ as } n \to \infty.$$