
HU, Probability Theory Fall 2015, Problems 6 (14.10.2015)

1. When the cumulative distribution function FX(t) = P (X ≤ t) of a R-
valued random variable X FX(t) = P (X ≤ t) of a R-valued random
variable X which is absolutely continuous with respect to Lebesgue
measure, which means

FX(b) = FX(a) +

∫ b

a

fX(t)dt

for some Borel measurable function fX(t) ≥ 0, which is called pro-
bability density function. When the classical derivative dFX

dt
(t) exists

at all t, then it is a probability density function. More in general
dFX

dt
(t) = dPX

dt
(t) = is understood as the Radon Nikodym derivative

of the push-forward probability measure PX with respect to Lebesgue
measure.

In such case, for every non-negative and Borel measurable test function
g(x) ≥ 0 we have

EP
(
g(X)

)
=

∫
Ω

g(X(ω))P (dω) =

∫
R
g(t)PX(dt)

=

∫
R
g(t)F (dt) =

∫
R
g(t)fX(t)dt (0.1)

where PX(B) = P
(
{ω : X(ω) ∈ B}

)
is the pushforward measure of

P by the random variable X. The integral w.r.t. PX on R is the same
as the Lebesque Stieltjes integral w.r.t dF , meaning that PX coincides
with the measure induced by the cumulative distribution function F (t)
on R.
Hint: One possible strategy for this proof is to use the monotone class
theorem: Define the class

C =
{
g : R→ [0,∞) bounded and Borel measurable such that (0.1) holds

}
and show that C is a monotone class (use the linearity of the integral
together with the monotone convergence theorem) which contains the
indicators 1(a,b](t) ∀a ≤ b ∈ R.

2. Linearity of the expectation The expectation of a random variable
X(ω) is defined as

EP
(
X
)
= EP

(
X+
)
− EP

(
X−
)
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where X+ = max{X, 0} ≥ 0, X− = max{−X, 0} ≥ 0 are non-negative
random variables, and we have defined first for non-negative random
variables

EP(X) = sup
Y ∈SF :0≤Y≤X

{
EP(Y )

}
In this way the expectation is well defined unless

EP(X
+) = EP(X

−) = +∞.

In the lectures we have shown (first for simple random variables and
then by the monotone convergence theorem ) that when X(ω) ≥ 0,
Y (ω) ≥ 0 P -almost surely (outside a P-null set), and a, b ≥ 0

EP(aX + bY ) = aEP(X) + bEP(Y ) (0.2)

Show that linearity holds for any random variables X, Y and a, b ∈ R
when the expectations on both left and right sides in (0.2) are finite.

Hint: write (aX + bY ) using the representations X = (X+ − X−),
Y = (Y +−Y −), a = (a+−a−), b = (b+−b−), and integrate the positive
parts and negative parts separately.

3. Let U(ω) be uniformly distributed r.v. with values in [0, 1], such that
P({U ∈ (a, b]}) = (b− a) for 0 ≤ a ≤ b ≤ 1.

(a) Show that the powers U(ω)z, with z ∈ Z (the integers) are random
variables.

(b) Compute the moments EP(U
z) ∈ [0,+∞] for z ∈ Z.

(c) Compute the exponential moments EP
(
exp(tU)

)
for t ∈ R.

(d) Compute the trigonometric moments EP
(
cos(2πtU)

)
and EP

(
sin(2πtU)

)
for t ∈ R.

4. Let f : [0, T ] → R+ be a non-negative and bounded measurable func-
tion.

We define its upper and lower Riemann-integrals as follows:

J+(f) = inf
{
I(g) : g ≥ f, g takes finitely many values and is piecewise continuous

}
J−(f) = sup

{
I(g) : g ≤ f, g takes finitely many values and is piecewise continuous

}
where the integral I(g) of a piecewise continuous function g taking fi-
nitely many values is the usual finite sum.
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Note that on the real line, a piecewise continuous simple function taking
finitely many values is piecewise constant, with representation

g(x) =
n∑
k=1

ak1Ei
(x), with I(g) =

n∑
k=1

ak length(Ei)

where Ei are intervals. In the construction of Lebesgue integral, the
general definition uses Borel sets instead of intervals.

We say that f is Riemann integrable when J+(f) = J−(f) which defines
the Riemann integral J(f) (it is possible that J(f) = +∞).

(a) Show that when f is Riemann integrable the Riemann integral
J(f) coincides with Lebegue integral I(f) defined in the lectures.
Hint We define the Lebesgue integral I(f) of a Borel measurable
non-negative function w.r.t. Lebesgue measure as

I(f) = sup
{
I(g) : g ≤ f, g is measurable and takes finitely many values

}
(b) Show that a non-negative continuous function f is Riemann inte-

grable on the compact set [0, T ].
Hint: a continuous function uniformly continuous on compact
sets. Note that you can approximate uniformly on compacts a
continuous function by piecewise continuous simple functions.

(c) Let f(x) = 1Q(x) where Q are the rationals.
Show that f is Borel measurable, but is not Riemann integrable
on [0, T ].
Hint : Show that on a compact interval [0, T ] J+(f) = T and
J−(f) = 0.

(d) Show that for the Lebesgue integral we have

I(f) =

∫ T

0

f(x)dx = 0

5. (a) Prove Chebychev inequality: for a random variable X with
X(ω) ≥ 0 P -almost surely,

P(X > t) ≤
EP
(
X
)

t
∀t > 0

Hint Note that

0 ≤ t 1(X(ω) > t) ≤ X(ω) .
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(b) Prove Chentsov inequality

P(X > t) ≤ inf
θ>0

{
exp(−θt)EP

(
exp(θX)

)}
Hint: for any θ > 0, X > t⇐⇒ exp(θX) > exp(θt) .

(c) Consider a random variable N(ω) with Poisson(λ) distribution,
where λ > 0 is the parameter and

Pλ
(
N = k) = exp(−λ)λ

k

k!
k ∈ N = {0, 1, 2, . . . }

(d) Knowing that E(exp(θN)) = exp
(
λ(eθ − 1)

)
, (computed in the

exercise sheet n.5) use Chentsov inequality to bound from above
the probability Pλ

(
N > t

)
, for t > 0.
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