HU, Probability Theory Fall 2015, Problems 6 (14.10.2015)

1. When the cumulative distribution function Fx(t) = P(X < t) of a R-
valued random variable X Fy(t) = P(X < t) of a R-valued random
variable X which is absolutely continuous with respect to Lebesgue
measure, which means

Fy(b) = Fy(a) + / ()t

for some Borel measurable function fx(¢) > 0, which is called pro-
bability density function. When the classical derivative 22X (¢) exists
at all ¢, then it is a probability density function. More in general
4 (1) = 22 (¢) = is understood as the Radon Nikodym derivative
of the push-forward probability measure Px with respect to Lebesgue

measure.

In such case, for every non-negative and Borel measurable test function
g(x) > 0 we have

Be(9(X)) = | s(X@)P() = [ a(oPx(an
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where Px(B) = P({w : X(w) € B}) is the pushforward measure of
P by the random variable X. The integral w.r.t. Py on R is the same
as the Lebesque Stieltjes integral w.r.t dF', meaning that Py coincides

with the measure induced by the cumulative distribution function F'(t)
on R.

Hint: One possible strategy for this proof is to use the monotone class
theorem: Define the class

C={g:R — [0,00) bounded and Borel measurable such that (0.1)) holds }

and show that C is a monotone class (use the linearity of the integral
together with the monotone convergence theorem) which contains the
indicators 1¢,4(t) Va < b€ R.

2. Linearity of the expectation The expectation of a random variable
X (w) is defined as

Ee(X) = Ep(X*) — Ep(X)



where X = max{X,0} >0, X~ = max{—X,0} > 0 are non-negative
random variables, and we have defined first for non-negative random
variables

Beo(X)=  swp  {E:(Y)}

YeSF:0<Y <X
In this way the expectation is well defined unless
E]}D(XJr) = Ep(Xi) = +00.

In the lectures we have shown (first for simple random variables and
then by the monotone convergence theorem ) that when X(w) > 0,
Y (w) > 0 P-almost surely (outside a P-null set), and a,b > 0

Show that linearity holds for any random variables X,Y and a,b € R

when the expectations on both left and right sides in ((0.2)) are finite.

Hint: write (aX + bY") using the representations X = (X — X7),
Y=Y"-Y"),a=(at—a"),b= (b"—b"), and integrate the positive
parts and negative parts separately.

. Let U(w) be uniformly distributed r.v. with values in [0, 1], such that
PH{U € (a,b]}) =(b—a) for 0 <a <b<1.

(a) Show that the powers U(w)?, with z € Z (the integers) are random
variables.

(b) Compute the moments Ep(U?) € [0, +o0] for z € Z.

(¢) Compute the exponential moments Ep(exp(tU)) for ¢ € R.

(d) Compute the trigonometric moments Ep(cos(27tU)) and Ep (sin(2mtU))
for t € R.

. Let f:[0,7] — R" be a non-negative and bounded measurable func-

tion.

We define its upper and lower Riemann-integrals as follows:

JT(f) =inf{I(g) : g > f,g takes finitely many values and is piecewise continuous }
J(f) = sup{[ (9) : g < f, g takes finitely many values and is piecewise continuous }

where the integral I(g) of a piecewise continuous function g taking fi-
nitely many values is the usual finite sum.



Note that on the real line, a piecewise continuous simple function taking
finitely many values is piecewise constant, with representation

g(x) = Z aglp, (x), with I(g) = Z ay length(E;)
k=1 k=1

where E; are intervals. In the construction of Lebesgue integral, the
general definition uses Borel sets instead of intervals.

We say that f is Riemann integrable when J*(f) = J~(f) which defines
the Riemann integral J(f) (it is possible that J(f) = +00).

(a) Show that when f is Riemann integrable the Riemann integral
J(f) coincides with Lebegue integral I(f) defined in the lectures.

Hint We define the Lebesgue integral I(f) of a Borel measurable
non-negative function w.r.t. Lebesgue measure as

I(f) =sup{I(g): g < f, g is measurable and takes finitely many values }

(b) Show that a non-negative continuous function f is Riemann inte-
grable on the compact set [0, 7.

Hint: a continuous function uniformly continuous on compact
sets. Note that you can approximate uniformly on compacts a
continuous function by piecewise continuous simple functions.
(c) Let f(z) = 1g(x) where Q are the rationals.
Show that f is Borel measurable, but is not Riemann integrable
on [0, 7.
Hint : Show that on a compact interval [0,7] J*(f) = T and
J7(f)=0.
(d) Show that for the Lebesgue integral we have

1(f) = / f(x)dz =0

(a) Prove Chebychev inequality: for a random variable X with
X(w) > 0 P-almost surely,

F (X)

P(X >t) < ;

Vt >0

Hint Note that
0<t1(X(w)>1t) < X(w).



t < 1 J— t

Hint: for any 0 > 0, X >t <= exp(0X) > exp(6t) .

(c¢) Consider a random variable N(w) with Poisson(\) distribution,
where A > 0 is the parameter and

)\k
P\(N =k) = eXp(—/\)y keN=1{0,1,2,...}
(d) Knowing that E(exp(6N)) = exp(A(e’ — 1)), (computed in the
exercise sheet n.5) use Chentsov inequality to bound from above
the probability Py (N > t), for t > 0.



